Classification of tree species and stock volume estimation in ground forest images using Deep Learning

库存(枪支) 像素 森林经营 基本事实 计算机科学 体积热力学 决策树 树(集合论) 数学 统计 人工智能 环境科学 地理 农林复合经营 量子力学 物理 数学分析 考古
作者
Jiazheng Liu,Xuefeng Wang,Tian Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:166: 105012-105012 被引量:50
标识
DOI:10.1016/j.compag.2019.105012
摘要

Tree species classification and estimation of stock volume are two very important tasks in forest management. Currently, Ground Surveys' Development (GSD) is the basic and most common approach employed by foresters. However, GSD is time-consuming and inefficient as it requires great human effort. In this research, digital cameras have been used, to obtain images of the ground forest. The classification and accumulation of tree species is performed, by considering extracted relevant image information. The purpose of this effort is not only to improve research efficiency, but to reduce the consumption of human and material resources as well. This research uses the UNET network which is pre-trained by the VGG16 model. The aim is to semantically segment the image containing the ground forest and the species and then to accurately identify the number of trees contained in the image. The proportion of the number of pixels in the trunk of each segment is estimated by considering the total number of pixels in the image. The nonlinear mixed effect model is used to estimate the growing stock volume. The differences in the growing stock volume caused by different forest types, are resolved by using the growing stock volume estimation equations, related to different tree species. The experimental results show that the tree species' classification accuracy in testing is 96.03% and the average IoU (Intersection over Union) is 86%. The R2 and RMSE of the growing stock volume prediction model are equal to 80.70% and 30.539 (m3/ha) respectively. Therefore, it is concluded that the method proposed in this research can be used as an effective tool for tree species' image segmentation and classification, and that the growing stock volume is predicted accurately by the extracted tree pixel information. The combination of the two approaches provides a new method for forestry ground investigation work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心的水卉完成签到,获得积分10
刚刚
富贵完成签到 ,获得积分10
2秒前
2秒前
3秒前
笨笨静槐完成签到,获得积分10
5秒前
胖小羊完成签到,获得积分10
5秒前
CCC完成签到 ,获得积分10
6秒前
8秒前
ikun完成签到 ,获得积分10
8秒前
9秒前
柳听白发布了新的文献求助10
9秒前
万里完成签到,获得积分10
9秒前
尼斯卡完成签到,获得积分10
10秒前
小闵完成签到,获得积分10
10秒前
leiiiiiiii完成签到,获得积分10
10秒前
淡然雪枫完成签到,获得积分10
10秒前
西瓜完成签到 ,获得积分10
12秒前
nater2ver完成签到,获得积分10
12秒前
六步郎完成签到,获得积分10
14秒前
15秒前
16秒前
嘀嘀哒哒完成签到,获得积分10
16秒前
萨尔莫斯发布了新的文献求助10
19秒前
柳听白完成签到,获得积分10
19秒前
务实的绝悟完成签到,获得积分10
19秒前
lingod完成签到,获得积分10
20秒前
哈哈完成签到 ,获得积分10
20秒前
流落尘世完成签到,获得积分10
21秒前
22秒前
nater3ver完成签到,获得积分10
22秒前
Owen应助wear88采纳,获得10
23秒前
涛哥来科研完成签到 ,获得积分10
24秒前
26秒前
篮乐艺完成签到 ,获得积分10
27秒前
研友_LJGoXn完成签到,获得积分10
28秒前
斯奈克完成签到,获得积分10
28秒前
V_I_G完成签到,获得积分10
28秒前
Lyrica完成签到 ,获得积分10
29秒前
SONGYEZI应助科研通管家采纳,获得20
29秒前
星芋啵啵完成签到 ,获得积分10
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150649
求助须知:如何正确求助?哪些是违规求助? 2802188
关于积分的说明 7846347
捐赠科研通 2459500
什么是DOI,文献DOI怎么找? 1309286
科研通“疑难数据库(出版商)”最低求助积分说明 628818
版权声明 601757