Kadomtsev–Petviashvili方程
Riccati方程
孤子
数学
不变(物理)
数学物理
转化(遗传学)
椭圆余弦波
数学分析
周期波
物理
特征方程
行波
波动方程
非线性系统
微分方程
量子力学
基因
化学
生物化学
作者
Ping Liu,Jie Cheng,Bo Ren,Jing Yang
出处
期刊:Chinese Physics B
[IOP Publishing]
日期:2020-02-01
卷期号:29 (2): 020201-020201
被引量:9
标识
DOI:10.1088/1674-1056/ab5eff
摘要
The famous Kadomtsev–Petviashvili (KP) equation is a classical equation in soliton theory. A Bäcklund transformation between the KP equation and the Schwarzian KP equation is demonstrated by means of the truncated Painlevé expansion in this paper. One-parameter group transformations and one-parameter subgroup-invariant solutions for the extended KP equation are obtained. The consistent Riccati expansion (CRE) solvability of the KP equation is proved. Some interaction structures between soliton–cnoidal waves are obtained by CRE and several evolution graphs and density graphs are plotted.
科研通智能强力驱动
Strongly Powered by AbleSci AI