Photocatalytic H2 generation via CoP quantum-dot-modified g-C3N4 synthesized by electroless plating

光催化 制氢 材料科学 光电流 催化作用 量子点 吸收边 磷化物 化学工程 分解水 光致发光 贵金属 光催化分解水 可见光谱 吸收(声学) 光化学 纳米技术 金属 化学 复合材料 光电子学 带隙 冶金 有机化学 工程类
作者
Kezhen Qi,Wenxiu Lv,Iltaf Khan,Shuyuan Liu
出处
期刊:Chinese Journal of Catalysis [Elsevier BV]
卷期号:41 (1): 114-121 被引量:177
标识
DOI:10.1016/s1872-2067(19)63459-5
摘要

Photocatalytic water splitting is a promising method for hydrogen production. Numerous efficient photocatalysts have been synthesized and utilized. However, photocatalysts without a noble metal as the co-catalyst have been rarely reported. Herein, a CoP co-catalyst-modified graphitic-C3N4 (g-C3N4/CoP) is investigated for photocatalytic water splitting to produce H2. The g-C3N4/CoP composite is synthesized in two steps. The first step is related to thermal decomposition, and the second step involves an electroless plating technique. The photocatalytic activity for hydrogen evolution reactions of g-C3N4 is distinctly increased by loading the appropriate amount of CoP quantum dots (QDs). Among the as-synthesized samples, the optimized one (g-C3N4/CoP-4%) shows exceptional photocatalytic activity as compared with pristine g-C3N4, generating H2 at a rate of 936 μ mol g−1 h−1, even higher than that of g-C3N4 with 4 wt% Pt (665 μmol g−1 h−1). The UV-visible and optical absorption behavior confirms that g-C3N4 has an absorption edge at 451 nm, but after being composited with CoP, g-C3N4/CoP-4% has an absorption edge at 497 nm. Furthermore, photoluminescence and photocurrent measurements confirm that loading CoP QDs to pristine g-C3N4 not only enhances the charge separation, but also improves the transfer of photogenerated e−-h+ pairs, thus improving the photocatalytic performance of the catalyst to generate H2. This work demonstrates a feasible strategy for the synthesis of highly efficient metal phosphide-loaded g-C3N4 for hydrogen generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助LIN采纳,获得10
1秒前
1秒前
1秒前
喜悦的半青完成签到,获得积分10
1秒前
2秒前
好宝宝发布了新的文献求助10
3秒前
上官若男应助程艳采纳,获得80
3秒前
伊可创发布了新的文献求助10
4秒前
Ava应助szh123采纳,获得10
5秒前
锦七发布了新的文献求助10
5秒前
小二郎应助收手吧大哥采纳,获得10
7秒前
8秒前
在水一方应助lm采纳,获得10
8秒前
可爱的函函应助jingjingA采纳,获得10
8秒前
Zdh同学完成签到,获得积分10
9秒前
我是老大应助淡然的铭采纳,获得10
10秒前
girl完成签到,获得积分10
11秒前
12秒前
华仔应助HAHAHA采纳,获得10
12秒前
12秒前
小坤同学发布了新的文献求助10
13秒前
14秒前
musejie应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
quhayley应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
15秒前
wanci应助隐形的乐枫采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021