Research on detection algorithm of lithium battery surface defects based on embedded machine vision

电池(电) 计算机科学 锂电池 过程(计算) 人工智能 算法 汽车工程 工程类 功率(物理) 离子 物理 量子力学 离子键合 操作系统
作者
Yonggang Chen,Yufeng Shu,Xiaomian Li,Changwei Xiong,Shenyi Cao,Xinyan Wen,Zicong Xie
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:41 (3): 4327-4335 被引量:10
标识
DOI:10.3233/jifs-189693
摘要

In the production process of lithium battery, the quality inspection requirements of lithium battery are very high. At present, most of the work is done manually. Aiming at the problem of large manual inspection workload and large error, the robot visual inspection technology is applied to the production of lithium battery. In recent years, with the rapid development and progress of science and technology, the rapid development of visual detection hardware and algorithms, making it possible to screen defective products through visual detection algorithms. This paper takes lithium battery as the research object, and studies its vision detection algorithm. As a common commodity, the quality of lithium battery is the key for users to choose. With the increasing requirements of users for battery quality, how to produce high-quality battery is the key problem to be solved by manufacturers. However, at present, the defects of battery surface are mostly carried out manually. There are low efficiency and low detection rate in the process of manual detection. In this paper, the visual detection algorithm is studied to detect the defects such as pits, rust marks and broken skin on the surface of lithium battery, specifically to design the imaging experimental platform of lithium battery; use different lighting schemes to design different battery positioning and extraction algorithms; use Hough detection method to locate the battery surface, and design the battery defect algorithm for this, and compare the algorithm through experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qwert完成签到,获得积分10
2秒前
3秒前
Akim应助michellewu采纳,获得10
4秒前
情怀应助旧辞采纳,获得10
4秒前
文献完成签到,获得积分10
5秒前
满意的厉完成签到,获得积分10
6秒前
秋天发布了新的文献求助20
7秒前
7秒前
8秒前
stresm完成签到,获得积分10
9秒前
chinluo完成签到 ,获得积分10
9秒前
12秒前
已过发布了新的文献求助10
14秒前
研友_8QyXr8发布了新的文献求助10
14秒前
CipherSage应助Fox采纳,获得10
15秒前
16秒前
17秒前
闫伟发布了新的文献求助50
17秒前
HarryYang发布了新的文献求助10
19秒前
Frank完成签到 ,获得积分10
19秒前
21秒前
研友_n0kYwL发布了新的文献求助10
22秒前
zho应助Dingxiaowen采纳,获得10
24秒前
SYLH应助游阿游采纳,获得10
26秒前
张张张关注了科研通微信公众号
26秒前
wanci应助今天看文献了吗采纳,获得10
27秒前
科研通AI5应助zcy采纳,获得10
28秒前
我是老大应助garyaa采纳,获得10
28秒前
胜天半子完成签到 ,获得积分10
32秒前
科研通AI5应助研友_n0kYwL采纳,获得10
33秒前
qinLuo完成签到 ,获得积分10
34秒前
苹果王子6699完成签到 ,获得积分10
35秒前
35秒前
小马甲应助随风而逝采纳,获得10
36秒前
无花果应助秋天采纳,获得10
36秒前
111发布了新的文献求助10
37秒前
38秒前
41秒前
shirly发布了新的文献求助10
43秒前
zhang完成签到,获得积分10
44秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736398
求助须知:如何正确求助?哪些是违规求助? 3280208
关于积分的说明 10019221
捐赠科研通 2996907
什么是DOI,文献DOI怎么找? 1644321
邀请新用户注册赠送积分活动 781918
科研通“疑难数据库(出版商)”最低求助积分说明 749626