Identify RNA-associated subcellular localizations based on multi-label learning using Chou's 5-steps rule.

人工智能 机器学习 深度学习 模式识别(心理学) 计算机科学
作者
Hao Wang,Yijie Ding,Jijun Tang,Quan Zou,Fei Guo
出处
期刊:BMC Genomics [Springer Nature]
卷期号:22 (1): 1-14 被引量:10
标识
DOI:10.1186/s12864-020-07347-7
摘要

Biological functions of biomolecules rely on the cellular compartments where they are located in cells. Importantly, RNAs are assigned in specific locations of a cell, enabling the cell to implement diverse biochemical processes in the way of concurrency. However, lots of existing RNA subcellular localization classifiers only solve the problem of single-label classification. It is of great practical significance to expand RNA subcellular localization into multi-label classification problem. In this study, we extract multi-label classification datasets about RNA-associated subcellular localizations on various types of RNAs, and then construct subcellular localization datasets on four RNA categories. In order to study Homo sapiens, we further establish human RNA subcellular localization datasets. Furthermore, we utilize different nucleotide property composition models to extract effective features to adequately represent the important information of nucleotide sequences. In the most critical part, we achieve a major challenge that is to fuse the multivariate information through multiple kernel learning based on Hilbert-Schmidt independence criterion. The optimal combined kernel can be put into an integration support vector machine model for identifying multi-label RNA subcellular localizations. Our method obtained excellent results of 0.703, 0.757, 0.787, and 0.800, respectively on four RNA data sets on average precision. To be specific, our novel method performs outstanding rather than other prediction tools on novel benchmark datasets. Moreover, we establish user-friendly web server with the implementation of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
槐序零玖完成签到,获得积分10
1秒前
万能图书馆应助李明采纳,获得10
3秒前
李巧儿完成签到,获得积分10
5秒前
6秒前
caffeine完成签到,获得积分10
8秒前
Yogita完成签到,获得积分10
9秒前
蛋壳柯发布了新的文献求助10
9秒前
笑点低的凝阳完成签到,获得积分10
10秒前
雨恋凡尘完成签到,获得积分10
10秒前
Explorer3号完成签到,获得积分10
10秒前
LIXI发布了新的文献求助10
11秒前
CipherSage应助正直花生采纳,获得10
11秒前
12秒前
而发的完成签到,获得积分20
13秒前
廉向珊完成签到 ,获得积分10
14秒前
17秒前
共享精神应助三三四采纳,获得10
17秒前
18秒前
19秒前
19秒前
一只小盆发布了新的文献求助10
21秒前
绿色的大嘴鸟完成签到 ,获得积分10
22秒前
23秒前
积极向上完成签到,获得积分0
23秒前
归海听云发布了新的文献求助10
24秒前
25秒前
领导范儿应助张庭玉采纳,获得10
26秒前
善良青筠发布了新的文献求助10
26秒前
29秒前
29秒前
李健的小迷弟应助蛋壳柯采纳,获得10
31秒前
luck完成签到,获得积分10
32秒前
爱静静应助元谷雪采纳,获得10
33秒前
33秒前
ZH发布了新的文献求助10
35秒前
正直花生发布了新的文献求助10
35秒前
熊熊熊完成签到,获得积分10
37秒前
微生完成签到 ,获得积分10
37秒前
bigpluto完成签到,获得积分10
38秒前
赘婿应助wang采纳,获得10
40秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788133
关于积分的说明 7784741
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011