Identify RNA-associated subcellular localizations based on multi-label learning using Chou's 5-steps rule.

人工智能 机器学习 深度学习 模式识别(心理学) 计算机科学
作者
Hao Wang,Yijie Ding,Jijun Tang,Quan Zou,Fei Guo
出处
期刊:BMC Genomics [Springer Nature]
卷期号:22 (1): 1-14 被引量:10
标识
DOI:10.1186/s12864-020-07347-7
摘要

Biological functions of biomolecules rely on the cellular compartments where they are located in cells. Importantly, RNAs are assigned in specific locations of a cell, enabling the cell to implement diverse biochemical processes in the way of concurrency. However, lots of existing RNA subcellular localization classifiers only solve the problem of single-label classification. It is of great practical significance to expand RNA subcellular localization into multi-label classification problem. In this study, we extract multi-label classification datasets about RNA-associated subcellular localizations on various types of RNAs, and then construct subcellular localization datasets on four RNA categories. In order to study Homo sapiens, we further establish human RNA subcellular localization datasets. Furthermore, we utilize different nucleotide property composition models to extract effective features to adequately represent the important information of nucleotide sequences. In the most critical part, we achieve a major challenge that is to fuse the multivariate information through multiple kernel learning based on Hilbert-Schmidt independence criterion. The optimal combined kernel can be put into an integration support vector machine model for identifying multi-label RNA subcellular localizations. Our method obtained excellent results of 0.703, 0.757, 0.787, and 0.800, respectively on four RNA data sets on average precision. To be specific, our novel method performs outstanding rather than other prediction tools on novel benchmark datasets. Moreover, we establish user-friendly web server with the implementation of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci应助蓝莓妮儿采纳,获得10
1秒前
潘2333完成签到,获得积分20
1秒前
大方的航空完成签到,获得积分10
2秒前
2秒前
苏silence完成签到,获得积分10
2秒前
浮游应助春风不语采纳,获得10
4秒前
米诺发布了新的文献求助10
5秒前
在水一方应助XingZiBa采纳,获得10
5秒前
5秒前
yeah发布了新的文献求助30
6秒前
苏silence发布了新的文献求助10
7秒前
LX完成签到,获得积分10
7秒前
Luuu发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
威武的小熊猫完成签到,获得积分10
11秒前
壮观若南完成签到,获得积分10
11秒前
耶的猫发布了新的文献求助10
12秒前
平方发布了新的文献求助10
13秒前
13秒前
米诺完成签到,获得积分10
14秒前
14秒前
雷马完成签到,获得积分10
14秒前
小蘑菇应助7ohnny采纳,获得10
15秒前
17秒前
zyz完成签到,获得积分10
17秒前
蓝莓妮儿发布了新的文献求助10
18秒前
NexusExplorer应助梦醒采纳,获得10
18秒前
glzhou1975发布了新的文献求助10
19秒前
19秒前
充电宝应助飘逸问晴采纳,获得10
22秒前
量子星尘发布了新的文献求助10
22秒前
SciGPT应助逆夏采纳,获得10
22秒前
23秒前
24秒前
陈惠卿88发布了新的文献求助10
24秒前
123456发布了新的文献求助20
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571900
求助须知:如何正确求助?哪些是违规求助? 4657057
关于积分的说明 14719219
捐赠科研通 4597883
什么是DOI,文献DOI怎么找? 2523461
邀请新用户注册赠送积分活动 1494260
关于科研通互助平台的介绍 1464374