亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A three-dimensional prediction method of dissolved oxygen in pond culture based on Attention-GRU-GBRT

均方误差 氧气 溶解有机碳 生化需氧量 环境科学 环境工程 计算机科学 水文学(农业) 生物系统 数学 统计 化学 环境化学 化学需氧量 工程类 岩土工程 有机化学 废水 生物
作者
Xinkai Cao,Ni Ren,Ganglu Tian,Yuxing Fan,Qingling Duan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:181: 105955-105955 被引量:25
标识
DOI:10.1016/j.compag.2020.105955
摘要

Pond culture is an open water body, the distribution of dissolved oxygen in water is three-dimensional. The demand for dissolved oxygen in aquatic products living in different water layers is different. The traditional one-dimensional prediction at one single monitoring point can‘t reflect the real situation of dissolved oxygen in different spaces in the pond. To solve these problems, a three-dimensional prediction method of dissolved oxygen based on Attention-Gated Recurrent Unit (GRU) - Gradient Boost Regression Tree (GBRT) was proposed in this paper. Firstly, the environmental factors affecting the distribution of dissolved oxygen were collected, and the dissolved oxygen prediction model of the central monitoring point was constructed using Attention-GRU. The three-dimensional coordinate system with the central monitoring point as the origin was then established, and the GBRT algorithm optimized by the Random Search algorithm(RS) was used to predict the dissolved oxygen in any position of the pond water. In the one-dimensional prediction of dissolved oxygen at the central monitoring point, the Attention-GRU model proposed in this paper had MSE of 0.121, MAE of 0.219, and RMSE of 0.348, which was a big improvement compared with LSTM model, ELM model and CNN model. In the three-dimensional prediction of dissolved oxygen in the pond, the RS-GBRT model proposed had MSE of 0.097, MAE of 0.191, and RMSE of 0.313. Compared with the models such as ExtraTree model, RandomForest model, and Bagging model, each evaluation index had been greatly improved. The experimental results indicated that the proposed method can accurately predict the dissolved oxygen in the three-dimensional space of the pond.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangfaqing942完成签到 ,获得积分10
2秒前
4秒前
6秒前
George发布了新的文献求助10
10秒前
lemon发布了新的文献求助10
12秒前
wanci应助George采纳,获得10
19秒前
v哈哈完成签到 ,获得积分10
24秒前
sun给sun的求助进行了留言
27秒前
37秒前
sun给sun的求助进行了留言
48秒前
1分钟前
George发布了新的文献求助10
1分钟前
酷炫灰狼发布了新的文献求助10
1分钟前
vitamin完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
NattyPoe应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
充电宝应助酷炫灰狼采纳,获得10
2分钟前
李爱国应助可靠的寒风采纳,获得10
2分钟前
TT完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
sun发布了新的文献求助10
2分钟前
林一发布了新的文献求助10
2分钟前
Hello应助雾里采纳,获得10
2分钟前
2分钟前
小二郎应助鳄鱼不做饿梦采纳,获得10
3分钟前
Criminology34应助林一采纳,获得10
3分钟前
3分钟前
酷炫灰狼发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
蜜汁章鱼丸完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4861758
关于积分的说明 15107715
捐赠科研通 4823032
什么是DOI,文献DOI怎么找? 2581870
邀请新用户注册赠送积分活动 1536034
关于科研通互助平台的介绍 1494399