清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A three-dimensional prediction method of dissolved oxygen in pond culture based on Attention-GRU-GBRT

均方误差 氧气 溶解有机碳 生化需氧量 环境科学 环境工程 计算机科学 水文学(农业) 生物系统 数学 统计 化学 环境化学 化学需氧量 工程类 岩土工程 有机化学 废水 生物
作者
Xinkai Cao,Ni Ren,Ganglu Tian,Yuxing Fan,Qingling Duan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:181: 105955-105955 被引量:25
标识
DOI:10.1016/j.compag.2020.105955
摘要

Pond culture is an open water body, the distribution of dissolved oxygen in water is three-dimensional. The demand for dissolved oxygen in aquatic products living in different water layers is different. The traditional one-dimensional prediction at one single monitoring point can‘t reflect the real situation of dissolved oxygen in different spaces in the pond. To solve these problems, a three-dimensional prediction method of dissolved oxygen based on Attention-Gated Recurrent Unit (GRU) - Gradient Boost Regression Tree (GBRT) was proposed in this paper. Firstly, the environmental factors affecting the distribution of dissolved oxygen were collected, and the dissolved oxygen prediction model of the central monitoring point was constructed using Attention-GRU. The three-dimensional coordinate system with the central monitoring point as the origin was then established, and the GBRT algorithm optimized by the Random Search algorithm(RS) was used to predict the dissolved oxygen in any position of the pond water. In the one-dimensional prediction of dissolved oxygen at the central monitoring point, the Attention-GRU model proposed in this paper had MSE of 0.121, MAE of 0.219, and RMSE of 0.348, which was a big improvement compared with LSTM model, ELM model and CNN model. In the three-dimensional prediction of dissolved oxygen in the pond, the RS-GBRT model proposed had MSE of 0.097, MAE of 0.191, and RMSE of 0.313. Compared with the models such as ExtraTree model, RandomForest model, and Bagging model, each evaluation index had been greatly improved. The experimental results indicated that the proposed method can accurately predict the dissolved oxygen in the three-dimensional space of the pond.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
LRR完成签到 ,获得积分10
16秒前
蝎子莱莱xth完成签到,获得积分10
32秒前
氢锂钠钾铷铯钫完成签到,获得积分10
36秒前
Square完成签到,获得积分10
41秒前
闪闪冰绿完成签到 ,获得积分10
42秒前
wanci应助科研通管家采纳,获得10
44秒前
48秒前
切尔顿发布了新的文献求助10
53秒前
59秒前
量子星尘发布了新的文献求助10
1分钟前
Long完成签到,获得积分10
2分钟前
2分钟前
小盼虫完成签到,获得积分10
2分钟前
2分钟前
Nan语发布了新的文献求助10
2分钟前
小盼虫发布了新的文献求助10
2分钟前
hhuajw应助科研通管家采纳,获得10
2分钟前
2分钟前
披着羊皮的狼完成签到 ,获得积分10
3分钟前
王麒发布了新的文献求助10
3分钟前
3分钟前
深情安青应助王麒采纳,获得10
3分钟前
房天川完成签到 ,获得积分10
3分钟前
ramsey33完成签到 ,获得积分10
3分钟前
xcuwlj完成签到 ,获得积分10
3分钟前
紫熊完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
1241343948发布了新的文献求助10
4分钟前
ALMT发布了新的文献求助10
4分钟前
小蘑菇应助科研通管家采纳,获得10
4分钟前
每㐬山风完成签到 ,获得积分10
4分钟前
5分钟前
LINDENG2004完成签到 ,获得积分10
5分钟前
友好初夏发布了新的文献求助10
5分钟前
完美世界应助友好初夏采纳,获得10
6分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
6分钟前
李健应助Marshall采纳,获得10
6分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5747093
求助须知:如何正确求助?哪些是违规求助? 5442437
关于积分的说明 15356206
捐赠科研通 4887014
什么是DOI,文献DOI怎么找? 2627592
邀请新用户注册赠送积分活动 1576008
关于科研通互助平台的介绍 1532848