A three-dimensional prediction method of dissolved oxygen in pond culture based on Attention-GRU-GBRT

均方误差 氧气 溶解有机碳 生化需氧量 环境科学 环境工程 计算机科学 水文学(农业) 生物系统 数学 统计 化学 环境化学 化学需氧量 工程类 岩土工程 有机化学 废水 生物
作者
Xinkai Cao,Ni Ren,Ganglu Tian,Yuxing Fan,Qingling Duan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:181: 105955-105955 被引量:25
标识
DOI:10.1016/j.compag.2020.105955
摘要

Pond culture is an open water body, the distribution of dissolved oxygen in water is three-dimensional. The demand for dissolved oxygen in aquatic products living in different water layers is different. The traditional one-dimensional prediction at one single monitoring point can‘t reflect the real situation of dissolved oxygen in different spaces in the pond. To solve these problems, a three-dimensional prediction method of dissolved oxygen based on Attention-Gated Recurrent Unit (GRU) - Gradient Boost Regression Tree (GBRT) was proposed in this paper. Firstly, the environmental factors affecting the distribution of dissolved oxygen were collected, and the dissolved oxygen prediction model of the central monitoring point was constructed using Attention-GRU. The three-dimensional coordinate system with the central monitoring point as the origin was then established, and the GBRT algorithm optimized by the Random Search algorithm(RS) was used to predict the dissolved oxygen in any position of the pond water. In the one-dimensional prediction of dissolved oxygen at the central monitoring point, the Attention-GRU model proposed in this paper had MSE of 0.121, MAE of 0.219, and RMSE of 0.348, which was a big improvement compared with LSTM model, ELM model and CNN model. In the three-dimensional prediction of dissolved oxygen in the pond, the RS-GBRT model proposed had MSE of 0.097, MAE of 0.191, and RMSE of 0.313. Compared with the models such as ExtraTree model, RandomForest model, and Bagging model, each evaluation index had been greatly improved. The experimental results indicated that the proposed method can accurately predict the dissolved oxygen in the three-dimensional space of the pond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tonson应助kunkun采纳,获得10
1秒前
LiSiyi发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
十三完成签到 ,获得积分10
2秒前
2秒前
幽月完成签到,获得积分10
3秒前
豆4799发布了新的文献求助10
3秒前
WYQX完成签到,获得积分10
4秒前
高高碧完成签到,获得积分20
5秒前
7秒前
hykkk发布了新的文献求助20
7秒前
所所应助ebby采纳,获得10
8秒前
蜻蜓队长完成签到,获得积分10
8秒前
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得30
10秒前
10秒前
无极微光应助科研通管家采纳,获得20
10秒前
浮游应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得30
10秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
浮游应助科研通管家采纳,获得10
11秒前
12秒前
代杰居然发布了新的文献求助10
13秒前
hykkk完成签到,获得积分10
14秒前
dy完成签到,获得积分10
14秒前
15秒前
就是躺完成签到 ,获得积分10
16秒前
闪闪落雁完成签到,获得积分20
16秒前
17秒前
17秒前
19秒前
19秒前
yyxhahaha完成签到,获得积分10
19秒前
丘比特应助LiSiyi采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469534
求助须知:如何正确求助?哪些是违规求助? 4572619
关于积分的说明 14336346
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465098
邀请新用户注册赠送积分活动 1453599
关于科研通互助平台的介绍 1428091