A three-dimensional prediction method of dissolved oxygen in pond culture based on Attention-GRU-GBRT

均方误差 氧气 溶解有机碳 生化需氧量 环境科学 环境工程 计算机科学 水文学(农业) 生物系统 数学 统计 化学 环境化学 化学需氧量 工程类 岩土工程 有机化学 废水 生物
作者
Xinkai Cao,Ni Ren,Ganglu Tian,Yuxing Fan,Qingling Duan
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:181: 105955-105955 被引量:25
标识
DOI:10.1016/j.compag.2020.105955
摘要

Pond culture is an open water body, the distribution of dissolved oxygen in water is three-dimensional. The demand for dissolved oxygen in aquatic products living in different water layers is different. The traditional one-dimensional prediction at one single monitoring point can‘t reflect the real situation of dissolved oxygen in different spaces in the pond. To solve these problems, a three-dimensional prediction method of dissolved oxygen based on Attention-Gated Recurrent Unit (GRU) - Gradient Boost Regression Tree (GBRT) was proposed in this paper. Firstly, the environmental factors affecting the distribution of dissolved oxygen were collected, and the dissolved oxygen prediction model of the central monitoring point was constructed using Attention-GRU. The three-dimensional coordinate system with the central monitoring point as the origin was then established, and the GBRT algorithm optimized by the Random Search algorithm(RS) was used to predict the dissolved oxygen in any position of the pond water. In the one-dimensional prediction of dissolved oxygen at the central monitoring point, the Attention-GRU model proposed in this paper had MSE of 0.121, MAE of 0.219, and RMSE of 0.348, which was a big improvement compared with LSTM model, ELM model and CNN model. In the three-dimensional prediction of dissolved oxygen in the pond, the RS-GBRT model proposed had MSE of 0.097, MAE of 0.191, and RMSE of 0.313. Compared with the models such as ExtraTree model, RandomForest model, and Bagging model, each evaluation index had been greatly improved. The experimental results indicated that the proposed method can accurately predict the dissolved oxygen in the three-dimensional space of the pond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明明发布了新的文献求助10
1秒前
情怀应助Tim采纳,获得50
2秒前
懒虫儿坤完成签到,获得积分10
2秒前
3秒前
凌云完成签到,获得积分10
3秒前
5秒前
小背包完成签到 ,获得积分10
8秒前
无误发布了新的文献求助10
10秒前
yx_cheng举报Luoyi求助涉嫌违规
10秒前
BANG完成签到,获得积分10
10秒前
Sunsets完成签到 ,获得积分10
10秒前
阿波罗发布了新的文献求助20
11秒前
way完成签到,获得积分10
14秒前
淡定的半梦完成签到 ,获得积分10
17秒前
共享精神应助汪汪别吃了采纳,获得10
19秒前
中心湖小海棠完成签到,获得积分10
19秒前
RenL完成签到,获得积分10
20秒前
20秒前
22秒前
wonder123完成签到,获得积分10
23秒前
匀速前行发布了新的文献求助10
24秒前
伍秋望完成签到,获得积分10
26秒前
27秒前
1111完成签到,获得积分10
29秒前
hujialiang完成签到,获得积分10
29秒前
30秒前
30秒前
卜小卜完成签到,获得积分10
31秒前
不吃胡萝卜完成签到 ,获得积分10
32秒前
32秒前
32秒前
hhhhhhhh发布了新的文献求助10
34秒前
叶子发布了新的文献求助50
34秒前
罗氏集团发布了新的文献求助10
36秒前
JamesPei应助梨理栗采纳,获得10
36秒前
匀速前行完成签到,获得积分10
36秒前
Fred完成签到,获得积分10
36秒前
江苏吴世勋完成签到,获得积分10
38秒前
小麻薯完成签到,获得积分20
39秒前
39秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997562
求助须知:如何正确求助?哪些是违规求助? 3537094
关于积分的说明 11270816
捐赠科研通 3276315
什么是DOI,文献DOI怎么找? 1806876
邀请新用户注册赠送积分活动 883554
科研通“疑难数据库(出版商)”最低求助积分说明 809975