A three-dimensional prediction method of dissolved oxygen in pond culture based on Attention-GRU-GBRT

均方误差 氧气 溶解有机碳 生化需氧量 环境科学 环境工程 计算机科学 水文学(农业) 生物系统 数学 统计 化学 环境化学 化学需氧量 工程类 岩土工程 生物 废水 有机化学
作者
Xinkai Cao,Ni Ren,Ganglu Tian,Yuxing Fan,Qingling Duan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:181: 105955-105955 被引量:25
标识
DOI:10.1016/j.compag.2020.105955
摘要

Pond culture is an open water body, the distribution of dissolved oxygen in water is three-dimensional. The demand for dissolved oxygen in aquatic products living in different water layers is different. The traditional one-dimensional prediction at one single monitoring point can‘t reflect the real situation of dissolved oxygen in different spaces in the pond. To solve these problems, a three-dimensional prediction method of dissolved oxygen based on Attention-Gated Recurrent Unit (GRU) - Gradient Boost Regression Tree (GBRT) was proposed in this paper. Firstly, the environmental factors affecting the distribution of dissolved oxygen were collected, and the dissolved oxygen prediction model of the central monitoring point was constructed using Attention-GRU. The three-dimensional coordinate system with the central monitoring point as the origin was then established, and the GBRT algorithm optimized by the Random Search algorithm(RS) was used to predict the dissolved oxygen in any position of the pond water. In the one-dimensional prediction of dissolved oxygen at the central monitoring point, the Attention-GRU model proposed in this paper had MSE of 0.121, MAE of 0.219, and RMSE of 0.348, which was a big improvement compared with LSTM model, ELM model and CNN model. In the three-dimensional prediction of dissolved oxygen in the pond, the RS-GBRT model proposed had MSE of 0.097, MAE of 0.191, and RMSE of 0.313. Compared with the models such as ExtraTree model, RandomForest model, and Bagging model, each evaluation index had been greatly improved. The experimental results indicated that the proposed method can accurately predict the dissolved oxygen in the three-dimensional space of the pond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
htumfg完成签到,获得积分10
1秒前
ABS发布了新的文献求助10
1秒前
可爱的函函应助冇_采纳,获得10
2秒前
momo完成签到,获得积分10
3秒前
润润轩轩发布了新的文献求助10
3秒前
背书强发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
7秒前
研友_VZG7GZ应助雨品采纳,获得10
8秒前
cctv18应助forstudy采纳,获得10
9秒前
10秒前
11秒前
11秒前
12秒前
结实夜雪完成签到,获得积分10
12秒前
赘婿应助复尔尔采纳,获得10
12秒前
13秒前
14秒前
sx应助jie.cr采纳,获得10
14秒前
14秒前
华仔应助便宜小师傅采纳,获得10
16秒前
寒舟饮完成签到,获得积分10
16秒前
17秒前
诸岩发布了新的文献求助10
17秒前
社会五好青年完成签到,获得积分10
18秒前
无花果应助疲惫的砂糖橘采纳,获得10
18秒前
慕青应助努力站桩的奶酪采纳,获得10
18秒前
18秒前
18秒前
谨川发布了新的文献求助10
19秒前
19秒前
zjy03259完成签到,获得积分20
19秒前
研究僧-卓发布了新的文献求助10
20秒前
哈哈哈哈哈监控完成签到,获得积分10
20秒前
zjy03259发布了新的文献求助10
22秒前
旺大财发布了新的文献求助10
23秒前
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247867
求助须知:如何正确求助?哪些是违规求助? 2891062
关于积分的说明 8266031
捐赠科研通 2559319
什么是DOI,文献DOI怎么找? 1388095
科研通“疑难数据库(出版商)”最低求助积分说明 650694
邀请新用户注册赠送积分活动 627581