Single resistive sensor for selective detection of multiple VOCs employing SnO2 hollowspheres and machine learning algorithm: A proof of concept

电阻式触摸屏 氧化锡 氧化物 材料科学 传感器阵列 计算机科学 算法 热液循环 纳米技术 机器学习 化学工程 计算机视觉 工程类 冶金
作者
Snehanjan Acharyya,Biswabandhu Jana,Sudip Nag,Goutam Saha,Prasanta Kumar Guha
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:321: 128484-128484 被引量:96
标识
DOI:10.1016/j.snb.2020.128484
摘要

Selective detection of harmful gasses and volatile organic compounds (VOCs) in the ambient has become a major challenge. Primarily, semiconducting metal-oxide based gas sensors sense various gases simultaneously, hence their selectivity is poor. This paper presents a single chemiresistive metal-oxide gas sensor for identification of multiple VOCs accurately by employing highly sensitive microstructure and machine learning tools. Tin oxide (SnO2) hollowspheres were taken as sensing material that were prepared through optimized hydrothermal route. Different characterizations were carried out to confirm the formation of desired morphology and structural features. The sensor device was fabricated by controlled drop cast technique over gold based interdigitated electrodes. The sensor showed remarkable response towards the target VOCs with high sensitivity and fast recovery time. Incorporation of machine learning algorithm on the obtained sensor data provided accurate identification of all the VOCs (best performance shown by random forest). In addition, the quantitative prediction of gas concentration was performed for each target gas using regression model. In comparison to e-noses (having array of sensors with different sensing material), a single chemiresistive metal-oxide sensor with proper machine learning tool is simple, economic, compact and easy to fabricate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助机灵的无极采纳,获得10
1秒前
czy发布了新的文献求助10
1秒前
ZhaoRongzhe发布了新的文献求助10
1秒前
breeze发布了新的文献求助10
1秒前
zhang发布了新的文献求助10
1秒前
皮卡皮卡完成签到,获得积分10
2秒前
浪花发布了新的文献求助10
2秒前
Doctor完成签到,获得积分10
2秒前
2秒前
纯情的馒头完成签到,获得积分10
2秒前
goldkoi发布了新的文献求助10
5秒前
大模型应助苟文锋采纳,获得10
6秒前
6秒前
GG发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
传奇3应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
9秒前
大模型应助科研通管家采纳,获得10
9秒前
机灵班应助舒服的飞丹采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
cc发布了新的文献求助10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得20
9秒前
Hello应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
xxfsx应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297710
求助须知:如何正确求助?哪些是违规求助? 4446487
关于积分的说明 13839691
捐赠科研通 4331653
什么是DOI,文献DOI怎么找? 2377824
邀请新用户注册赠送积分活动 1373105
关于科研通互助平台的介绍 1338650