重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Single resistive sensor for selective detection of multiple VOCs employing SnO2 hollowspheres and machine learning algorithm: A proof of concept

电阻式触摸屏 氧化锡 氧化物 材料科学 传感器阵列 计算机科学 算法 热液循环 纳米技术 机器学习 化学工程 计算机视觉 工程类 冶金
作者
Snehanjan Acharyya,Biswabandhu Jana,Sudip Nag,Goutam Saha,Prasanta Kumar Guha
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:321: 128484-128484 被引量:96
标识
DOI:10.1016/j.snb.2020.128484
摘要

Selective detection of harmful gasses and volatile organic compounds (VOCs) in the ambient has become a major challenge. Primarily, semiconducting metal-oxide based gas sensors sense various gases simultaneously, hence their selectivity is poor. This paper presents a single chemiresistive metal-oxide gas sensor for identification of multiple VOCs accurately by employing highly sensitive microstructure and machine learning tools. Tin oxide (SnO2) hollowspheres were taken as sensing material that were prepared through optimized hydrothermal route. Different characterizations were carried out to confirm the formation of desired morphology and structural features. The sensor device was fabricated by controlled drop cast technique over gold based interdigitated electrodes. The sensor showed remarkable response towards the target VOCs with high sensitivity and fast recovery time. Incorporation of machine learning algorithm on the obtained sensor data provided accurate identification of all the VOCs (best performance shown by random forest). In addition, the quantitative prediction of gas concentration was performed for each target gas using regression model. In comparison to e-noses (having array of sensors with different sensing material), a single chemiresistive metal-oxide sensor with proper machine learning tool is simple, economic, compact and easy to fabricate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
心灵美的觅翠完成签到,获得积分10
刚刚
希望天下0贩的0应助zSmart采纳,获得10
1秒前
折兮品发布了新的文献求助10
1秒前
fff完成签到,获得积分10
1秒前
眼睛大怜容完成签到 ,获得积分10
2秒前
田様应助科研通管家采纳,获得10
3秒前
3秒前
i说晚安发布了新的文献求助10
3秒前
东方元语应助科研通管家采纳,获得20
3秒前
3秒前
3秒前
3秒前
贪玩心情发布了新的文献求助30
4秒前
4秒前
4秒前
科研通AI6应助迅速的以亦采纳,获得10
5秒前
kmy发布了新的文献求助10
5秒前
Mr.egg发布了新的文献求助10
5秒前
夏无极发布了新的文献求助10
5秒前
6秒前
咕噜田完成签到 ,获得积分10
6秒前
123456完成签到,获得积分10
6秒前
昵称完成签到 ,获得积分10
6秒前
浮游应助光亮的青文采纳,获得10
6秒前
凌尘完成签到 ,获得积分10
6秒前
科目三应助Jodie采纳,获得10
7秒前
8秒前
WWW发布了新的文献求助10
8秒前
关远航完成签到,获得积分10
8秒前
丘比特应助SinaiPen采纳,获得80
8秒前
李爱国应助026采纳,获得10
9秒前
青年才俊发布了新的文献求助10
9秒前
9秒前
123456发布了新的文献求助10
9秒前
9秒前
12秒前
YY发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
zzzzzzzzzzzz发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465659
求助须知:如何正确求助?哪些是违规求助? 4570026
关于积分的说明 14321675
捐赠科研通 4496406
什么是DOI,文献DOI怎么找? 2463313
邀请新用户注册赠送积分活动 1452253
关于科研通互助平台的介绍 1427471