Evaluating meta-analytic methods to detect selective reporting in the presence of dependent effect sizes.

I类和II类错误 单变量 统计 荟萃分析 出版偏见 计量经济学 统计假设检验 统计能力 样本量测定 回归分析 数学 多元统计 置信区间 医学 内科学
作者
Melissa A. Rodgers,James E. Pustejovsky
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:26 (2): 141-160 被引量:260
标识
DOI:10.1037/met0000300
摘要

Selective reporting of results based on their statistical significance threatens the validity of meta-analytic findings. A variety of techniques for detecting selective reporting, publication bias, or small-study effects are available and are routinely used in research syntheses. Most such techniques are univariate, in that they assume that each study contributes a single, independent effect size estimate to the meta-analysis. In practice, however, studies often contribute multiple, statistically dependent effect size estimates, such as for multiple measures of a common outcome construct. Many methods are available for meta-analyzing dependent effect sizes, but methods for investigating selective reporting while also handling effect size dependencies require further investigation. Using Monte Carlo simulations, we evaluate three available univariate tests for small-study effects or selective reporting, including the trim and fill test, Egger's regression test, and a likelihood ratio test from a three-parameter selection model (3PSM), when dependence is ignored or handled using ad hoc techniques. We also examine two variants of Egger's regression test that incorporate robust variance estimation (RVE) or multilevel meta-analysis (MLMA) to handle dependence. Simulation results demonstrate that ignoring dependence inflates Type I error rates for all univariate tests. Variants of Egger's regression maintain Type I error rates when dependent effect sizes are sampled or handled using RVE or MLMA. The 3PSM likelihood ratio test does not fully control Type I error rates. With the exception of the 3PSM, all methods have limited power to detect selection bias except under strong selection for statistically significant effects. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
畅快行云完成签到,获得积分10
刚刚
刚刚
淡定草丛完成签到 ,获得积分10
刚刚
落寞怀柔完成签到,获得积分10
刚刚
1秒前
小猫咪完成签到,获得积分10
1秒前
1秒前
Jiancui完成签到,获得积分10
1秒前
斯文败类应助JOJO采纳,获得10
1秒前
彭于晏应助拼搏亦松采纳,获得10
1秒前
沫柠完成签到 ,获得积分10
3秒前
完美世界应助Ll采纳,获得10
4秒前
rubbertail完成签到,获得积分20
4秒前
黑大帅完成签到,获得积分10
4秒前
科研通AI5应助风中以菱采纳,获得10
5秒前
Lea完成签到,获得积分10
5秒前
6秒前
郑开司09发布了新的文献求助10
6秒前
minmin完成签到,获得积分10
6秒前
乐乐应助科研通管家采纳,获得10
7秒前
雪白问兰应助科研通管家采纳,获得50
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
难过的翎应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
Hungrylunch应助科研通管家采纳,获得20
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
prosperp应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
8秒前
Hello应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672