Evaluating meta-analytic methods to detect selective reporting in the presence of dependent effect sizes.

I类和II类错误 单变量 统计 荟萃分析 出版偏见 计量经济学 统计假设检验 统计能力 样本量测定 回归分析 数学 多元统计 置信区间 医学 内科学
作者
Melissa A. Rodgers,James E. Pustejovsky
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:26 (2): 141-160 被引量:282
标识
DOI:10.1037/met0000300
摘要

Selective reporting of results based on their statistical significance threatens the validity of meta-analytic findings. A variety of techniques for detecting selective reporting, publication bias, or small-study effects are available and are routinely used in research syntheses. Most such techniques are univariate, in that they assume that each study contributes a single, independent effect size estimate to the meta-analysis. In practice, however, studies often contribute multiple, statistically dependent effect size estimates, such as for multiple measures of a common outcome construct. Many methods are available for meta-analyzing dependent effect sizes, but methods for investigating selective reporting while also handling effect size dependencies require further investigation. Using Monte Carlo simulations, we evaluate three available univariate tests for small-study effects or selective reporting, including the trim and fill test, Egger's regression test, and a likelihood ratio test from a three-parameter selection model (3PSM), when dependence is ignored or handled using ad hoc techniques. We also examine two variants of Egger's regression test that incorporate robust variance estimation (RVE) or multilevel meta-analysis (MLMA) to handle dependence. Simulation results demonstrate that ignoring dependence inflates Type I error rates for all univariate tests. Variants of Egger's regression maintain Type I error rates when dependent effect sizes are sampled or handled using RVE or MLMA. The 3PSM likelihood ratio test does not fully control Type I error rates. With the exception of the 3PSM, all methods have limited power to detect selection bias except under strong selection for statistically significant effects. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
立冏商发布了新的文献求助10
3秒前
3秒前
4秒前
刘佳敏完成签到 ,获得积分10
4秒前
共享精神应助kk子采纳,获得10
6秒前
泽锦臻发布了新的文献求助10
8秒前
FashionBoy应助dz采纳,获得10
9秒前
ShengzhangLiu完成签到,获得积分10
9秒前
9秒前
q792309106发布了新的文献求助10
9秒前
susu发布了新的文献求助10
9秒前
10秒前
zhumeinv发布了新的文献求助10
11秒前
ShengzhangLiu发布了新的文献求助10
13秒前
14秒前
秀丽莛完成签到,获得积分10
16秒前
恋雅颖月应助zozo采纳,获得10
17秒前
xxxxx完成签到,获得积分10
17秒前
谨慎的哈密瓜完成签到 ,获得积分10
18秒前
19秒前
20秒前
20秒前
李爱国应助无奈的幻雪采纳,获得10
22秒前
华仔完成签到,获得积分10
22秒前
24秒前
25秒前
qi0625完成签到,获得积分10
26秒前
cxlhzq完成签到,获得积分10
26秒前
爆米花应助zhangmuying采纳,获得10
27秒前
科研yu完成签到,获得积分10
27秒前
胡凤凰完成签到,获得积分10
30秒前
gg发布了新的文献求助10
31秒前
chen发布了新的文献求助10
31秒前
吹梦西洲完成签到,获得积分10
33秒前
请叫我风吹麦浪应助PureLIN采纳,获得30
35秒前
fhbsdufh完成签到,获得积分10
35秒前
tomato关注了科研通微信公众号
36秒前
2Cd完成签到,获得积分10
37秒前
桃博完成签到,获得积分10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991883
求助须知:如何正确求助?哪些是违规求助? 3533014
关于积分的说明 11260344
捐赠科研通 3272297
什么是DOI,文献DOI怎么找? 1805688
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809425