Feature Extraction for Hyperspectral Imagery: The Evolution From Shallow to Deep: Overview and Toolbox

高光谱成像 计算机科学 特征提取 人工智能 维数之咒 工具箱 特征(语言学) 模式识别(心理学) 特征学习 深度学习 降维 遥感 地理 语言学 哲学 程序设计语言
作者
Behnood Rasti,Danfeng Hong,Renlong Hang,Pedram Ghamisi,Xudong Kang,Jocelyn Chanussot,Jón Atli Benediktsson
出处
期刊:IEEE Geoscience and Remote Sensing Magazine [Institute of Electrical and Electronics Engineers]
卷期号:8 (4): 60-88 被引量:448
标识
DOI:10.1109/mgrs.2020.2979764
摘要

Hyperspectral images provide detailed spectral information through hundreds of (narrow) spectral channels (also known as dimensionality or bands) with continuous spectral information that can accurately classify diverse materials of interest. The increased dimensionality of such data makes it possible to significantly improve data information content but provides a challenge to the conventional techniques (the so-called curse of dimensionality) for accurate analysis of hyperspectral images. Feature extraction, as a vibrant field of research in the hyperspectral community, evolved through decades of research to address this issue and extract informative features suitable for data representation and classification. The advances in feature extraction have been inspired by two fields of research, including the popularization of image and signal processing as well as machine (deep) learning, leading to two types of feature extraction approaches named shallow and deep techniques. This article outlines the advances in feature extraction approaches for hyperspectral imagery by providing a technical overview of the state-of-the-art techniques, providing useful entry points for researchers at different levels, including students, researchers, and senior researchers, willing to explore novel investigations on this challenging topic. In more detail, this paper provides a bird's eye view over shallow (both supervised and unsupervised) and deep feature extraction approaches specifically dedicated to the topic of hyperspectral feature extraction and its application on hyperspectral image classification. Additionally, this paper compares 15 advanced techniques with an emphasis on their methodological foundations in terms of classification accuracies. Furthermore, the codes and libraries are shared at https://github.com/BehnoodRasti/HyFTech-Hyperspectral-Shallow-Deep-Feature-Extraction-Toolbox.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐文硕完成签到,获得积分10
刚刚
刚刚
CodeCraft应助gulu采纳,获得10
1秒前
2秒前
无水乙醚发布了新的文献求助10
3秒前
XX发布了新的文献求助10
4秒前
库三金发布了新的文献求助10
4秒前
shelemi发布了新的文献求助10
4秒前
4秒前
wsc发布了新的文献求助10
4秒前
小马发布了新的文献求助20
5秒前
赘婿应助李纪磊采纳,获得10
5秒前
千风完成签到,获得积分10
5秒前
5秒前
jjjdy完成签到,获得积分10
6秒前
天天快乐应助三十四画生采纳,获得10
7秒前
ydl0413发布了新的文献求助10
7秒前
充电宝应助颜诺采纳,获得10
7秒前
7秒前
烟花应助yibo采纳,获得10
8秒前
8秒前
Tongtong完成签到 ,获得积分10
8秒前
1234完成签到 ,获得积分10
9秒前
猪皮恶人发布了新的文献求助10
9秒前
kk发布了新的文献求助10
9秒前
CipherSage应助江江采纳,获得10
10秒前
Orange应助科研人才采纳,获得10
11秒前
Xu完成签到,获得积分10
11秒前
koito发布了新的文献求助10
11秒前
澜聴完成签到,获得积分10
11秒前
啦啦啦发布了新的文献求助10
11秒前
积极的未来完成签到,获得积分10
13秒前
曾经的妍完成签到,获得积分10
13秒前
善学以致用应助兰东平采纳,获得10
14秒前
慕青应助啦啦啦采纳,获得10
16秒前
落后的觅松完成签到,获得积分10
16秒前
18秒前
大模型应助库三金采纳,获得10
19秒前
烟花应助汤t采纳,获得10
19秒前
苹果饼干发布了新的文献求助30
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154159
求助须知:如何正确求助?哪些是违规求助? 2805038
关于积分的说明 7863014
捐赠科研通 2463114
什么是DOI,文献DOI怎么找? 1311158
科研通“疑难数据库(出版商)”最低求助积分说明 629464
版权声明 601821