Appointment Scheduling Under Time-Dependent Patient No-Show Behavior

地铁列车时刻表 模棱两可 计算机科学 数学优化 调度(生产过程) 集合(抽象数据类型) 服务(商务) 加班费 还原(数学) 运筹学 最优化问题 数学 经济 劳动经济学 程序设计语言 几何学 经济 操作系统
作者
Qingxia Kong,Shan Li,Nan Liu,Chung‐Piaw Teo,Zhenzhen Yan
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:66 (8): 3480-3500 被引量:75
标识
DOI:10.1287/mnsc.2019.3366
摘要

This paper studies how to schedule medical appointments with time-dependent patient no-show behavior and random service times. The problem is motivated by our studies of independent datasets from countries in two continents that unanimously identify a significant time-of-day effect on patient show-up probabilities. We deploy a distributionally robust model, which minimizes the worst-case total expected costs of patient waiting and service provider’s idling and overtime, by optimizing the scheduled arrival times of patients. This model is challenging because evaluating the total cost for a given schedule involves a linear program with uncertainties present in both the objective function and the right-hand side of the constraints. In addition, the ambiguity set considered contains discrete uncertainties and complementary functional relationships among these uncertainties (namely, patient no-shows and service durations). We show that when patient no-shows are exogenous (i.e., time-independent), the problem can be reformulated as a copositive program and then be approximated by semidefinite programs. When patient no-shows are endogenous on time (and hence on the schedule), the problem becomes a bilinear copositive program. We construct a set of dual prices to guide the search for a good schedule and use the technique iteratively to obtain a near-optimal solution. Our computational studies reveal a significant reduction in total expected cost by taking into account the time-of-day variation in patient show-up probabilities as opposed to ignoring it. This paper was accepted by David Simchi-Levi, optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助ff采纳,获得10
刚刚
1秒前
yang完成签到 ,获得积分10
2秒前
3秒前
cc发布了新的文献求助10
4秒前
ydfq发布了新的文献求助10
4秒前
陶醉的夜绿给陶醉的夜绿的求助进行了留言
6秒前
6秒前
7秒前
NexusExplorer应助武雨寒采纳,获得10
7秒前
ljl发布了新的文献求助10
7秒前
菠菜驳回了水牛应助
8秒前
8秒前
xt发布了新的文献求助10
10秒前
科研通AI2S应助君寻采纳,获得10
12秒前
Jenny完成签到,获得积分10
12秒前
咸鱼发布了新的文献求助10
12秒前
12秒前
东方幼旋完成签到,获得积分10
13秒前
ff发布了新的文献求助10
13秒前
张柔完成签到 ,获得积分10
13秒前
boyue发布了新的文献求助10
15秒前
要减肥的断秋完成签到,获得积分10
16秒前
一条小柱完成签到,获得积分10
16秒前
66666完成签到,获得积分20
16秒前
迅速易云完成签到,获得积分10
17秒前
17秒前
hux完成签到,获得积分10
17秒前
辛勤的怀亦完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
Orange应助卡卡采纳,获得10
19秒前
ff完成签到,获得积分10
20秒前
冰凌花开发布了新的文献求助10
20秒前
20秒前
情怀应助fanboyz采纳,获得10
21秒前
21秒前
ryen发布了新的文献求助10
22秒前
纯情的馒头给纯情的馒头的求助进行了留言
22秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128679
求助须知:如何正确求助?哪些是违规求助? 2779501
关于积分的说明 7743462
捐赠科研通 2434802
什么是DOI,文献DOI怎么找? 1293635
科研通“疑难数据库(出版商)”最低求助积分说明 623388
版权声明 600514