清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Using machine learning to predict stroke‐associated pneumonia in Chinese acute ischaemic stroke patients

医学 接收机工作特性 冲程(发动机) 逻辑回归 改良兰金量表 缺血性中风 内科学 随机森林 肺炎 曲线下面积 机器学习 缺血性中风 人工智能 急诊医学 计算机科学 缺血 工程类 机械工程
作者
Xiang Li,Min Wu,Chao Sun,Zheng Zhao,F. Wang,Xueqian Zheng,Weihong Ge,Junshan Zhou,Jianjun Zou
出处
期刊:European Journal of Neurology [Wiley]
卷期号:27 (8): 1656-1663 被引量:41
标识
DOI:10.1111/ene.14295
摘要

Background and purpose Stroke‐associated pneumonia (SAP) is a common, severe but preventable complication after acute ischaemic stroke (AIS). Early identification of patients at high risk of SAP is especially necessary. However, previous prediction models have not been widely used in clinical practice. Thus, we aimed to develop a model to predict SAP in Chinese AIS patients using machine learning (ML) methods. Methods Acute ischaemic stroke patients were prospectively collected at the National Advanced Stroke Center of Nanjing First Hospital (China) between September 2016 and November 2019, and the data were randomly subdivided into a training set and a testing set. With the training set, five ML models (logistic regression with regulation, support vector machine, random forest classifier, extreme gradient boosting (XGBoost) and fully connected deep neural network) were developed. These models were assessed by the area under the curve of receiver operating characteristic on the testing set. Our models were also compared with pre‐stroke Independence (modified Rankin Scale), Sex, Age, National Institutes of Health Stroke Scale (ISAN) and Pneumonia Prediction (PNA) scores. Results A total of 3160 AIS patients were eventually included in this retrospective study. Among the five ML models, the XGBoost model performed best. The area under the curve of the XGBoost model on the testing set was 0.841 (sensitivity, 81.0%; specificity, 73.3%). It also achieved significantly better performance than ISAN and PNA scores. Conclusions Our study demonstrated that the XGBoost model with six common variables can predict SAP in Chinese AIS patients more optimally than ISAN and PNA scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
饼饼发布了新的文献求助10
7秒前
Jihad完成签到,获得积分10
11秒前
故意的冰淇淋完成签到 ,获得积分10
20秒前
23秒前
HJJHJH完成签到,获得积分10
27秒前
饼饼完成签到,获得积分10
29秒前
HJJHJH发布了新的文献求助10
30秒前
爱听歌蜗牛应助HJJHJH采纳,获得10
37秒前
51秒前
Hello应助白华苍松采纳,获得10
56秒前
Sandy完成签到,获得积分10
1分钟前
情怀应助ceeray23采纳,获得20
1分钟前
wanci应助白华苍松采纳,获得10
2分钟前
年轻的凝云完成签到 ,获得积分10
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
李健的粉丝团团长应助一木采纳,获得200
2分钟前
poki完成签到 ,获得积分10
2分钟前
2分钟前
一木发布了新的文献求助200
3分钟前
3分钟前
MchemG完成签到,获得积分0
3分钟前
amelia完成签到 ,获得积分10
3分钟前
sunny完成签到,获得积分10
5分钟前
5分钟前
fddd发布了新的文献求助10
5分钟前
5分钟前
星星发布了新的文献求助10
5分钟前
6分钟前
SciGPT应助星星采纳,获得10
6分钟前
星辰大海应助科研通管家采纳,获得10
6分钟前
牛八先生完成签到,获得积分10
6分钟前
方白秋完成签到,获得积分10
7分钟前
7分钟前
我是老大应助白华苍松采纳,获得10
8分钟前
汤圆儿完成签到 ,获得积分10
8分钟前
烟花应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
wodetaiyangLLL完成签到 ,获得积分10
9分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539060
求助须知:如何正确求助?哪些是违规求助? 3116670
关于积分的说明 9326455
捐赠科研通 2814641
什么是DOI,文献DOI怎么找? 1546998
邀请新用户注册赠送积分活动 720679
科研通“疑难数据库(出版商)”最低求助积分说明 712178