亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Study on Li Pre-Doping Technique with Li-Naphthalene Solutions Toward Si Negative Electrode for Next-Generation Batteries

电极 锂(药物) 法拉第效率 碳酸丙烯酯 电解质 四氢呋喃 兴奋剂 电化学 无机化学 材料科学 化学 溶剂 化学工程 有机化学 物理化学 内分泌学 工程类 医学 光电子学
作者
Mika Fukunishi,Shunya Ishii,Atsushi Kondô,Hikarí Sakaebe,Morihiro Saito
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (2): 410-410
标识
DOI:10.1149/ma2020-022410mtgabs
摘要

Si is one of the most attractive negative electrode materials for balanced design of high energy density Li-ion, Li-O 2 and Li-S batteries because of the high theoretical capacity of 3580 mAh g -1 delivered by Li 3.75 Si. Li pre-doping should be an essential technology to reduce the irreversible capacity of Si negative electrodes in the first cycle or to load Li source to positive electrode materials free of Li such as for Li-O 2 or Li-S batteries.Various methods of Li pre-doping have been reported: direct contact with Li metal foil or a solution of organo-lithium radical salt like n-butyl lithium, electrochemical Li pre-doping, and mixing Li metal, etc. [1]. So far, we have reported that Si electrode pre-doped by direct contact with Li metal in an electrolyte solution containing fluoroethylene carbonate showed an excellent cycle life and high Coulombic efficiency [2]. Although this method is suitable to shallow impregnation for thin Si electrodes, it is not applicable to thick and dense electrodes of practical use [3]. Therefore, we focused on method of solution of organo-lithium, Li-naphthalene, to pre-dope Li into Si. As for the method, the choice of solvent is critical to control the reactivity such as reaction velocity and penetration depth of Li. Five kinds of ether solvents were adopted in this study: three of cyclic ethers i.e. tetrahydrofuran (THF), 2-methyltetrahydrofuran (MeTHF) and tetrahydropyran (THP), and two of linear chain ethers i.e. dimethoxy ethane (G1) and trietylene glycol dimethyl ether (G3). Figure 1 shows discharge capacities of Li pre-doped Si electrodes as a function of pre-dope time at 30 °C. It is explicit that the discharge capacities of cyclic ethers such as MeTHF, THP and THF are higher than those of chain ethers such as G1 and G3. Moreover, MeTHF, THP, and G3 exhibited monotonous increasing capacities as pre-doping time increases, while THF and G1 showed decreasing tendencies. The XRD diffraction results exhibited the formation of Li 3.75 Si in the Si electrodes doped in the cyclic ether solutions for 24 hours. Figure 2 shows that the equilibrium potential of each Li-NTL solution decreased with increasing temperature in the order of G3 > G1 > THF > THP, MeTHF. The equilibrium potential is a good index of formation of Li-NTL radical salt. Therefore, the order of the potential is consistent with the order of discharge capacities shown in Figure 1, although the order of G1 and G3 is inconsistent between them. Figure 2 also suggests clear dependency of pre-doping rate on temperature: The higher the temperature, the higher the pre-doping rate. The dissociation degree of Li-NTL solutions were estimated from the Walden plots of the solutions by using the data of the fluidity and ionic conductivity. The result demonstrated that the dissociation degree of Li and naphthalene radical was in the order of MeTHF << THP ≤ THF. Considering the above results, this should indicate that Li-NTL(solvent) n contact ion pairs are relatively stable in MeTHF or THP solution without the reductive decomposition compared with those in THF solutions. The present results reveal that Si electrode can be effectively pre-doped with Li by using Li-NTL solution, and that the choice of solvent for Li-NTL solution is one of the critical factors to obtain high Li pre-doping level. Li 3.75 Si phase was formed by pre-doping for 24 hours in the Li-NTL solution using MeTHF or THP, achieving high Li pre-doping levels over 3000 mAh g -1 . The solution pre-doping adopting Li-NTL is one of the promising methods for deep Li-doping, revealing that the lower equilibrium potentials resulting from deep Li doping is due to stable Li-NTL(solvent) n contact ion pairs. This work was partially supported by NEDO RISING2 project (JPNP16001). References [1] T. Placke et al., Batteries , 4 , 4 (2018). [2] M. Saito et al., J. Electrochem. Soc. , 166 (3), A5174 (2019). [3] M. Saito et al., Abstracts of ACEPS-10, T2-P-083 (2019). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
uu完成签到 ,获得积分10
5秒前
Xyyy完成签到,获得积分10
6秒前
鹿呦完成签到 ,获得积分10
7秒前
7秒前
深情安青应助Xyyy采纳,获得10
9秒前
23秒前
28秒前
28秒前
30秒前
ucas大菠萝完成签到,获得积分10
30秒前
ysx完成签到 ,获得积分10
31秒前
33秒前
hh发布了新的文献求助10
37秒前
00发布了新的文献求助10
38秒前
jam发布了新的文献求助30
40秒前
赘婿应助结实的凉面采纳,获得10
43秒前
脑洞疼应助暴躁火龙果采纳,获得10
43秒前
jam完成签到,获得积分10
49秒前
Hello应助暴躁火龙果采纳,获得10
49秒前
52秒前
小二郎应助Joy采纳,获得30
53秒前
以七完成签到 ,获得积分10
55秒前
科研通AI6.1应助炙热成仁采纳,获得10
58秒前
1分钟前
田様应助暴躁火龙果采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
陳.发布了新的文献求助10
1分钟前
陈的住气完成签到 ,获得积分10
1分钟前
1分钟前
任性的皮皮虾完成签到,获得积分10
1分钟前
1分钟前
1分钟前
悦耳青梦发布了新的文献求助10
1分钟前
Pengfei_Soil发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746540
求助须知:如何正确求助?哪些是违规求助? 5435517
关于积分的说明 15355531
捐赠科研通 4886528
什么是DOI,文献DOI怎么找? 2627297
邀请新用户注册赠送积分活动 1575762
关于科研通互助平台的介绍 1532510