Study on Li Pre-Doping Technique with Li-Naphthalene Solutions Toward Si Negative Electrode for Next-Generation Batteries

电极 锂(药物) 法拉第效率 碳酸丙烯酯 电解质 四氢呋喃 兴奋剂 电化学 无机化学 材料科学 化学 溶剂 化学工程 有机化学 物理化学 光电子学 医学 工程类 内分泌学
作者
Mika Fukunishi,Shunya Ishii,Atsushi Kondô,Hikarí Sakaebe,Morihiro Saito
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (2): 410-410
标识
DOI:10.1149/ma2020-022410mtgabs
摘要

Si is one of the most attractive negative electrode materials for balanced design of high energy density Li-ion, Li-O 2 and Li-S batteries because of the high theoretical capacity of 3580 mAh g -1 delivered by Li 3.75 Si. Li pre-doping should be an essential technology to reduce the irreversible capacity of Si negative electrodes in the first cycle or to load Li source to positive electrode materials free of Li such as for Li-O 2 or Li-S batteries.Various methods of Li pre-doping have been reported: direct contact with Li metal foil or a solution of organo-lithium radical salt like n-butyl lithium, electrochemical Li pre-doping, and mixing Li metal, etc. [1]. So far, we have reported that Si electrode pre-doped by direct contact with Li metal in an electrolyte solution containing fluoroethylene carbonate showed an excellent cycle life and high Coulombic efficiency [2]. Although this method is suitable to shallow impregnation for thin Si electrodes, it is not applicable to thick and dense electrodes of practical use [3]. Therefore, we focused on method of solution of organo-lithium, Li-naphthalene, to pre-dope Li into Si. As for the method, the choice of solvent is critical to control the reactivity such as reaction velocity and penetration depth of Li. Five kinds of ether solvents were adopted in this study: three of cyclic ethers i.e. tetrahydrofuran (THF), 2-methyltetrahydrofuran (MeTHF) and tetrahydropyran (THP), and two of linear chain ethers i.e. dimethoxy ethane (G1) and trietylene glycol dimethyl ether (G3). Figure 1 shows discharge capacities of Li pre-doped Si electrodes as a function of pre-dope time at 30 °C. It is explicit that the discharge capacities of cyclic ethers such as MeTHF, THP and THF are higher than those of chain ethers such as G1 and G3. Moreover, MeTHF, THP, and G3 exhibited monotonous increasing capacities as pre-doping time increases, while THF and G1 showed decreasing tendencies. The XRD diffraction results exhibited the formation of Li 3.75 Si in the Si electrodes doped in the cyclic ether solutions for 24 hours. Figure 2 shows that the equilibrium potential of each Li-NTL solution decreased with increasing temperature in the order of G3 > G1 > THF > THP, MeTHF. The equilibrium potential is a good index of formation of Li-NTL radical salt. Therefore, the order of the potential is consistent with the order of discharge capacities shown in Figure 1, although the order of G1 and G3 is inconsistent between them. Figure 2 also suggests clear dependency of pre-doping rate on temperature: The higher the temperature, the higher the pre-doping rate. The dissociation degree of Li-NTL solutions were estimated from the Walden plots of the solutions by using the data of the fluidity and ionic conductivity. The result demonstrated that the dissociation degree of Li and naphthalene radical was in the order of MeTHF << THP ≤ THF. Considering the above results, this should indicate that Li-NTL(solvent) n contact ion pairs are relatively stable in MeTHF or THP solution without the reductive decomposition compared with those in THF solutions. The present results reveal that Si electrode can be effectively pre-doped with Li by using Li-NTL solution, and that the choice of solvent for Li-NTL solution is one of the critical factors to obtain high Li pre-doping level. Li 3.75 Si phase was formed by pre-doping for 24 hours in the Li-NTL solution using MeTHF or THP, achieving high Li pre-doping levels over 3000 mAh g -1 . The solution pre-doping adopting Li-NTL is one of the promising methods for deep Li-doping, revealing that the lower equilibrium potentials resulting from deep Li doping is due to stable Li-NTL(solvent) n contact ion pairs. This work was partially supported by NEDO RISING2 project (JPNP16001). References [1] T. Placke et al., Batteries , 4 , 4 (2018). [2] M. Saito et al., J. Electrochem. Soc. , 166 (3), A5174 (2019). [3] M. Saito et al., Abstracts of ACEPS-10, T2-P-083 (2019). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助aa采纳,获得10
刚刚
桐桐应助aa采纳,获得10
刚刚
英俊的铭应助aa采纳,获得10
刚刚
在水一方应助aa采纳,获得10
刚刚
充电宝应助标致易槐采纳,获得10
1秒前
xxy发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
hans应助科研巨星采纳,获得10
3秒前
kiwi完成签到,获得积分10
3秒前
喂丿你的益达完成签到,获得积分10
4秒前
stt1011完成签到,获得积分10
4秒前
5秒前
sweet发布了新的文献求助10
5秒前
伤逝1990完成签到,获得积分10
6秒前
清秀的路灯完成签到,获得积分20
7秒前
VVV发布了新的文献求助10
7秒前
8秒前
标致易槐完成签到,获得积分20
8秒前
8秒前
8秒前
8秒前
lianliyou发布了新的文献求助10
9秒前
思源应助doctorbba采纳,获得10
9秒前
9秒前
小二郎应助zzz采纳,获得10
9秒前
FashionBoy应助xxy采纳,获得10
10秒前
10秒前
aurora应助迷路的枫采纳,获得10
10秒前
HYT发布了新的文献求助10
10秒前
10秒前
11秒前
wyq发布了新的文献求助10
11秒前
12秒前
玛卡巴卡完成签到 ,获得积分10
12秒前
12秒前
13秒前
lianliyou完成签到,获得积分10
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728134
求助须知:如何正确求助?哪些是违规求助? 3273299
关于积分的说明 9980758
捐赠科研通 2988689
什么是DOI,文献DOI怎么找? 1639727
邀请新用户注册赠送积分活动 778966
科研通“疑难数据库(出版商)”最低求助积分说明 747838