亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Study on Li Pre-Doping Technique with Li-Naphthalene Solutions Toward Si Negative Electrode for Next-Generation Batteries

电极 锂(药物) 法拉第效率 碳酸丙烯酯 电解质 四氢呋喃 兴奋剂 电化学 无机化学 材料科学 化学 溶剂 化学工程 有机化学 物理化学 内分泌学 工程类 医学 光电子学
作者
Mika Fukunishi,Shunya Ishii,Atsushi Kondô,Hikarí Sakaebe,Morihiro Saito
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (2): 410-410
标识
DOI:10.1149/ma2020-022410mtgabs
摘要

Si is one of the most attractive negative electrode materials for balanced design of high energy density Li-ion, Li-O 2 and Li-S batteries because of the high theoretical capacity of 3580 mAh g -1 delivered by Li 3.75 Si. Li pre-doping should be an essential technology to reduce the irreversible capacity of Si negative electrodes in the first cycle or to load Li source to positive electrode materials free of Li such as for Li-O 2 or Li-S batteries.Various methods of Li pre-doping have been reported: direct contact with Li metal foil or a solution of organo-lithium radical salt like n-butyl lithium, electrochemical Li pre-doping, and mixing Li metal, etc. [1]. So far, we have reported that Si electrode pre-doped by direct contact with Li metal in an electrolyte solution containing fluoroethylene carbonate showed an excellent cycle life and high Coulombic efficiency [2]. Although this method is suitable to shallow impregnation for thin Si electrodes, it is not applicable to thick and dense electrodes of practical use [3]. Therefore, we focused on method of solution of organo-lithium, Li-naphthalene, to pre-dope Li into Si. As for the method, the choice of solvent is critical to control the reactivity such as reaction velocity and penetration depth of Li. Five kinds of ether solvents were adopted in this study: three of cyclic ethers i.e. tetrahydrofuran (THF), 2-methyltetrahydrofuran (MeTHF) and tetrahydropyran (THP), and two of linear chain ethers i.e. dimethoxy ethane (G1) and trietylene glycol dimethyl ether (G3). Figure 1 shows discharge capacities of Li pre-doped Si electrodes as a function of pre-dope time at 30 °C. It is explicit that the discharge capacities of cyclic ethers such as MeTHF, THP and THF are higher than those of chain ethers such as G1 and G3. Moreover, MeTHF, THP, and G3 exhibited monotonous increasing capacities as pre-doping time increases, while THF and G1 showed decreasing tendencies. The XRD diffraction results exhibited the formation of Li 3.75 Si in the Si electrodes doped in the cyclic ether solutions for 24 hours. Figure 2 shows that the equilibrium potential of each Li-NTL solution decreased with increasing temperature in the order of G3 > G1 > THF > THP, MeTHF. The equilibrium potential is a good index of formation of Li-NTL radical salt. Therefore, the order of the potential is consistent with the order of discharge capacities shown in Figure 1, although the order of G1 and G3 is inconsistent between them. Figure 2 also suggests clear dependency of pre-doping rate on temperature: The higher the temperature, the higher the pre-doping rate. The dissociation degree of Li-NTL solutions were estimated from the Walden plots of the solutions by using the data of the fluidity and ionic conductivity. The result demonstrated that the dissociation degree of Li and naphthalene radical was in the order of MeTHF << THP ≤ THF. Considering the above results, this should indicate that Li-NTL(solvent) n contact ion pairs are relatively stable in MeTHF or THP solution without the reductive decomposition compared with those in THF solutions. The present results reveal that Si electrode can be effectively pre-doped with Li by using Li-NTL solution, and that the choice of solvent for Li-NTL solution is one of the critical factors to obtain high Li pre-doping level. Li 3.75 Si phase was formed by pre-doping for 24 hours in the Li-NTL solution using MeTHF or THP, achieving high Li pre-doping levels over 3000 mAh g -1 . The solution pre-doping adopting Li-NTL is one of the promising methods for deep Li-doping, revealing that the lower equilibrium potentials resulting from deep Li doping is due to stable Li-NTL(solvent) n contact ion pairs. This work was partially supported by NEDO RISING2 project (JPNP16001). References [1] T. Placke et al., Batteries , 4 , 4 (2018). [2] M. Saito et al., J. Electrochem. Soc. , 166 (3), A5174 (2019). [3] M. Saito et al., Abstracts of ACEPS-10, T2-P-083 (2019). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助fang采纳,获得20
5秒前
19秒前
30秒前
李健应助四夕采纳,获得10
32秒前
133发布了新的文献求助10
36秒前
40秒前
Orange应助二牛采纳,获得30
42秒前
多边棱发布了新的文献求助10
45秒前
46秒前
LPH01发布了新的文献求助10
1分钟前
二牛发布了新的文献求助10
1分钟前
1分钟前
四夕发布了新的文献求助10
1分钟前
yuansong715完成签到,获得积分20
1分钟前
许大脚完成签到 ,获得积分10
1分钟前
四夕完成签到,获得积分10
1分钟前
1分钟前
yuansong715发布了新的文献求助20
1分钟前
yiyi131发布了新的文献求助10
1分钟前
棠棠完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
桐桐应助小鱼采纳,获得10
1分钟前
活力竺完成签到,获得积分10
1分钟前
fang发布了新的文献求助20
1分钟前
活力竺发布了新的文献求助10
1分钟前
1分钟前
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
景辣条应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
yiyi131完成签到,获得积分10
1分钟前
222520zys完成签到,获得积分10
1分钟前
1分钟前
1分钟前
222520zys发布了新的文献求助10
1分钟前
丘比特应助十几采纳,获得10
1分钟前
1分钟前
艺术大师发布了新的文献求助10
1分钟前
2分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142628
求助须知:如何正确求助?哪些是违规求助? 2793540
关于积分的说明 7806835
捐赠科研通 2449789
什么是DOI,文献DOI怎么找? 1303444
科研通“疑难数据库(出版商)”最低求助积分说明 626917
版权声明 601314