Spectral Demodulation of Fiber Bragg Grating Sensor Based on Deep Convolutional Neural Networks

解调 光纤布拉格光栅 计算机科学 卷积神经网络 电子工程 均方误差 人工神经网络 光纤 声学 人工智能 电信 数学 物理 工程类 统计 频道(广播)
作者
Zihan Cao,Shengqi Zhang,Titi Xia,Zhengyong Liu,Zhaohui Li
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:40 (13): 4429-4435 被引量:24
标识
DOI:10.1109/jlt.2022.3155253
摘要

This paper presents a new method of demodulating the spectrum of fiber Bragg grating (FBG) based sensors by employing deep convolutional neural networks (DCNN). As a proof of demonstration, FBG-based temperature sensor was utilized to conduct temperature measurement and over 1700 samples of the spectral raw data were recorded to train and validate the DCNN model. Using such method, the temperature information can be directly extracted from the experimentally obtained FBG spectra without any peak tracking algorithms. Since it makes full use of the information containing the full spectrum rather than only the central wavelength, it overcomes the limit of traditional fitting method and could improve the measurement accuracy of FBG effectively, which can reach 99.95% and its mean square error (MSE) is just 0.1080 °C, an order of magnitude less than that achieved by the traditional maximum peak method. The proposed method could reduce the need of high-performance hardware of equipment, whose accuracy can still maintain a high level when the sampling rate is reduced. Additionally, the universality of the method was experimentally demonstrated through the accurate demodulation of tilted FBG spectrum, and the relevant measurand can be retrieved directly from the entire spectrum instead of detecting the change of particular peaks. The proposed approach provides a cost-effective solution for the FBG based sensing system, and is promising for establishing sensing networks to implement smart monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljx发布了新的文献求助10
刚刚
lnx完成签到,获得积分10
刚刚
皮皮虾发布了新的文献求助10
1秒前
Efei完成签到,获得积分10
1秒前
研友_nEW4G8完成签到,获得积分10
1秒前
huco发布了新的文献求助10
1秒前
仁者无敌完成签到,获得积分10
1秒前
2秒前
嘀嘀咕咕完成签到,获得积分10
2秒前
朴素的问枫完成签到,获得积分10
2秒前
cata完成签到,获得积分10
2秒前
逝水无痕完成签到,获得积分10
2秒前
zhangxr发布了新的文献求助10
3秒前
善学以致用应助yaya采纳,获得10
3秒前
科研通AI2S应助贺飞风采纳,获得10
3秒前
一点通完成签到,获得积分10
3秒前
搜集达人应助科研小扒菜采纳,获得10
3秒前
小二郎应助米歇尔采纳,获得10
4秒前
suyan完成签到 ,获得积分10
4秒前
顺利凡梦发布了新的文献求助10
5秒前
zwxzwx完成签到 ,获得积分20
6秒前
早岁完成签到,获得积分10
6秒前
李健的小迷弟应助huco采纳,获得10
7秒前
哈密瓜完成签到 ,获得积分10
8秒前
娟姐发布了新的文献求助10
9秒前
儿学化学打断腿完成签到,获得积分10
9秒前
Egoist完成签到,获得积分10
9秒前
张纠纠发布了新的文献求助10
9秒前
伯赏满天发布了新的文献求助10
10秒前
虚幻的冷松完成签到,获得积分10
10秒前
斯文败类应助小白菜采纳,获得30
10秒前
11秒前
zino完成签到,获得积分10
11秒前
哈哈完成签到 ,获得积分10
12秒前
似水流年完成签到,获得积分10
12秒前
勤恳的茗茗完成签到,获得积分20
12秒前
香蕉晓曼完成签到,获得积分10
13秒前
123完成签到,获得积分10
14秒前
俊秀的安阳完成签到,获得积分10
14秒前
谨慎的豆芽完成签到 ,获得积分10
14秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142960
求助须知:如何正确求助?哪些是违规求助? 2793911
关于积分的说明 7808759
捐赠科研通 2450220
什么是DOI,文献DOI怎么找? 1303729
科研通“疑难数据库(出版商)”最低求助积分说明 627055
版权声明 601356