A Strategy to Select Macrocyclic Peptides Featuring Asymmetric Molecular Scaffolds as Cyclization Units by Phage Display

化学 噬菌体展示 组合化学 化学空间 肽库 半胱氨酸 化学图书馆 计算生物学 药物发现 二硫键 残留物(化学) 立体化学 小分子 生物化学 肽序列 基因 生物
作者
Titia Rixt Oppewal,Ivar D. Jansen,Johan Hekelaar,Clemens Mayer
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (8): 3644-3652 被引量:43
标识
DOI:10.1021/jacs.1c12822
摘要

Macrocyclic peptides (MPs) have positioned themselves as a privileged class of compounds for the discovery of therapeutics and development of chemical probes. Aided by the development of powerful selection strategies, high-affinity binders against biomolecular targets can readily be elicited from massive, genetically encoded libraries by affinity selection. For example, in phage display, MPs are accessed on the surface of whole bacteriophages via disulfide formation, the use of (symmetric) crosslinkers, or the incorporation of non-canonical amino acids. To facilitate a straightforward cyclization of linear precursors with asymmetric molecular scaffolds, which are often found at the core of naturally occurring MPs, we report an efficient two-step strategy to access MPs via the programmed modification of a unique cysteine residue and an N-terminal amine. We demonstrate that this approach yields MPs featuring asymmetric cyclization units from both synthetic peptides and when linear precursors are appended onto a phage-coat protein. Finally, we showcase that our cyclization strategy is compatible with traditional phage-display protocols and enables the selection of MP binders against a model target protein from naïve libraries. By enabling the incorporation of non-peptidic moieties that (1) can serve as cyclization units, (2) provide interactions for binding, and/or (3) tailor pharmacological properties, our head-to-side-chain cyclization strategy provides access to a currently under-explored chemical space for the development of chemical probes and therapeutics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧郁静白完成签到,获得积分10
刚刚
1秒前
旷野发布了新的文献求助10
1秒前
哈拉少完成签到 ,获得积分10
2秒前
2秒前
初之完成签到,获得积分20
3秒前
在水一方应助妮儿采纳,获得10
3秒前
3秒前
4秒前
少年愁发布了新的文献求助10
4秒前
SYLH应助冷酷向雪采纳,获得10
5秒前
刺五加完成签到 ,获得积分10
5秒前
LU发布了新的文献求助10
6秒前
7秒前
江城完成签到,获得积分10
7秒前
深情夏彤发布了新的文献求助10
7秒前
板凳发布了新的文献求助10
7秒前
8秒前
8秒前
Akim应助陈小白采纳,获得10
8秒前
Paopaoxuan应助十两采纳,获得10
8秒前
LSH发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
慕青应助IvenChou采纳,获得10
9秒前
dd完成签到,获得积分10
9秒前
9秒前
贤惠的迎夏完成签到,获得积分10
12秒前
Tao完成签到,获得积分10
12秒前
mengbicheng完成签到,获得积分10
12秒前
dd发布了新的文献求助10
13秒前
zhanks发布了新的文献求助10
13秒前
13秒前
随风飞阳发布了新的文献求助10
13秒前
柠檬完成签到,获得积分10
13秒前
LSH完成签到,获得积分10
13秒前
KK发布了新的文献求助10
13秒前
求知的周发布了新的文献求助10
14秒前
好运来发布了新的文献求助10
14秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470791
求助须知:如何正确求助?哪些是违规求助? 3063758
关于积分的说明 9085407
捐赠科研通 2754254
什么是DOI,文献DOI怎么找? 1511347
邀请新用户注册赠送积分活动 698380
科研通“疑难数据库(出版商)”最低求助积分说明 698253