亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Implementation of volumetric-modulated arc therapy for locally advanced breast cancer patients: Dosimetric comparison with deliverability consideration of planning techniques and predictions of patient-specific QA results via supervised machine learning

工作量 放射治疗计划 医学 计算机科学 医学物理学 机器学习 人工智能 放射治疗 放射科 操作系统
作者
C. Noblet,Marie Duthy,Frédéric Coste,Marie Saliou,Benoît Samain,Franck Drouet,Thomas Papazyan,Matthieu Moreau
出处
期刊:Physica Medica [Elsevier BV]
卷期号:96: 18-31 被引量:8
标识
DOI:10.1016/j.ejmp.2022.02.015
摘要

Abstract

Purpose

The aim of this study was to implement a clinically deliverable VMAT planning technique dedicated to advanced breast cancer, and to predict failed QA using a machine learning (ML) model to optimize the QA workload.

Methods

For three planning methods (2A: 2-partial arc, 2AS: 2-partial arc with splitting, 4A: 4-partial arc), dosimetric results were compared with patient-specific QA performed with the electronic portal imaging device of the linac. A dataset was built with the pass/fail status of the plans and complexity metrics. It was divided into training and testing sets. An ML metamodel combining predictions from six base classifiers was trained on the training set to predict plans as ‘pass' or ‘fail'. The predictive performances were evaluated using the unseen data of the testing set.

Results

The dosimetric comparison highlighted that 4A was the highest dosimetric performant method but also the poorest performant in the QA process. 2AS spared the best heart, but provided the highest dose to the contralateral breast and lowest node coverage. 2A provides a dosimetric compromise between organ at risk sparing and PTV coverage with satisfactory QA results. The metamodel had a median predictive sensitivity of 73% and a median specificity of 91%.

Conclusions

The 2A method was selected to calculate clinically deliverable VMAT plans; however, the 2AS method was maintained when the heart was of particular importance and breath-hold techniques were not applicable. The metamodel provides promising predictive performance, and it is intended to be improved as a larger dataset becomes available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗的菀发布了新的文献求助10
1秒前
桦奕兮完成签到 ,获得积分10
4秒前
情怀应助奋斗的菀采纳,获得10
17秒前
danielbest1234完成签到,获得积分10
19秒前
38秒前
烟花应助科研通管家采纳,获得10
41秒前
爱静静应助科研通管家采纳,获得10
41秒前
爱静静应助科研通管家采纳,获得10
41秒前
爱静静应助科研通管家采纳,获得10
41秒前
爱静静应助科研通管家采纳,获得10
41秒前
爱静静应助科研通管家采纳,获得10
41秒前
griffon完成签到,获得积分10
43秒前
夏宇发布了新的文献求助10
43秒前
48秒前
愚人发布了新的文献求助30
51秒前
顺利的战斗机完成签到,获得积分10
51秒前
53秒前
李健的小迷弟应助愚人采纳,获得10
55秒前
FIGGIEKIO发布了新的文献求助10
58秒前
愚人完成签到,获得积分10
1分钟前
小蘑菇应助XFaning采纳,获得10
1分钟前
夏宇完成签到,获得积分10
1分钟前
1分钟前
独特的鱼完成签到,获得积分10
1分钟前
独特的鱼发布了新的文献求助10
1分钟前
RichardBillyham完成签到 ,获得积分10
1分钟前
斯文败类应助XFaning采纳,获得10
1分钟前
1分钟前
李爱国应助Charon采纳,获得10
1分钟前
1分钟前
1分钟前
奋斗的菀发布了新的文献求助10
1分钟前
Charon完成签到,获得积分10
1分钟前
StayGolDay完成签到,获得积分10
1分钟前
1分钟前
小芭乐完成签到 ,获得积分10
2分钟前
2分钟前
cc发布了新的文献求助10
2分钟前
2分钟前
我是老大应助cc采纳,获得10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968433
求助须知:如何正确求助?哪些是违规求助? 3513255
关于积分的说明 11167026
捐赠科研通 3248604
什么是DOI,文献DOI怎么找? 1794268
邀请新用户注册赠送积分活动 874990
科研通“疑难数据库(出版商)”最低求助积分说明 804629