Implementation of volumetric-modulated arc therapy for locally advanced breast cancer patients: Dosimetric comparison with deliverability consideration of planning techniques and predictions of patient-specific QA results via supervised machine learning

工作量 放射治疗计划 医学 计算机科学 医学物理学 机器学习 人工智能 放射治疗 放射科 操作系统
作者
C. Noblet,Marie Duthy,Frédéric Coste,Marie Saliou,Benoît Samain,Franck Drouet,Thomas Papazyan,Matthieu Moreau
出处
期刊:Physica Medica [Elsevier]
卷期号:96: 18-31 被引量:8
标识
DOI:10.1016/j.ejmp.2022.02.015
摘要

Abstract

Purpose

The aim of this study was to implement a clinically deliverable VMAT planning technique dedicated to advanced breast cancer, and to predict failed QA using a machine learning (ML) model to optimize the QA workload.

Methods

For three planning methods (2A: 2-partial arc, 2AS: 2-partial arc with splitting, 4A: 4-partial arc), dosimetric results were compared with patient-specific QA performed with the electronic portal imaging device of the linac. A dataset was built with the pass/fail status of the plans and complexity metrics. It was divided into training and testing sets. An ML metamodel combining predictions from six base classifiers was trained on the training set to predict plans as ‘pass' or ‘fail'. The predictive performances were evaluated using the unseen data of the testing set.

Results

The dosimetric comparison highlighted that 4A was the highest dosimetric performant method but also the poorest performant in the QA process. 2AS spared the best heart, but provided the highest dose to the contralateral breast and lowest node coverage. 2A provides a dosimetric compromise between organ at risk sparing and PTV coverage with satisfactory QA results. The metamodel had a median predictive sensitivity of 73% and a median specificity of 91%.

Conclusions

The 2A method was selected to calculate clinically deliverable VMAT plans; however, the 2AS method was maintained when the heart was of particular importance and breath-hold techniques were not applicable. The metamodel provides promising predictive performance, and it is intended to be improved as a larger dataset becomes available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乔心发布了新的文献求助10
刚刚
刚刚
Owen应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得30
刚刚
怕黑半仙应助科研通管家采纳,获得10
刚刚
LRISEM发布了新的文献求助10
刚刚
大模型应助科研通管家采纳,获得30
刚刚
汉堡包应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
1秒前
一一应助科研通管家采纳,获得50
1秒前
萧水白应助大清采纳,获得10
2秒前
光亮的素完成签到,获得积分20
2秒前
shmorby发布了新的文献求助10
2秒前
3秒前
3秒前
Yuuki完成签到,获得积分10
3秒前
4秒前
xiongyh10发布了新的文献求助10
4秒前
zxy完成签到 ,获得积分10
4秒前
xbb0905完成签到,获得积分10
5秒前
小二郎应助乔心采纳,获得10
5秒前
认真惮发布了新的文献求助10
5秒前
WJY完成签到,获得积分10
6秒前
8秒前
陈梓给陈梓的求助进行了留言
8秒前
hexiaoxiao发布了新的文献求助10
8秒前
所所应助nine2652采纳,获得10
9秒前
huangcx完成签到,获得积分10
10秒前
12秒前
wanci应助大胆香彤采纳,获得10
13秒前
清脆绮烟发布了新的文献求助200
13秒前
lls完成签到,获得积分20
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260503
求助须知:如何正确求助?哪些是违规求助? 2901672
关于积分的说明 8316639
捐赠科研通 2571234
什么是DOI,文献DOI怎么找? 1396914
科研通“疑难数据库(出版商)”最低求助积分说明 653598
邀请新用户注册赠送积分活动 632040