Machine learning algorithm can provide assistance for the diagnosis of non-ST-segment elevation myocardial infarction

梯度升压 逻辑回归 人工智能 支持向量机 机器学习 医学 随机森林 不稳定型心绞痛 心肌梗塞 朴素贝叶斯分类器 Boosting(机器学习) 算法 计算机科学 内科学
作者
Qin Lian,Quan Qi,Aikeliyaer Ainiwaer,Wen Qing Hou,Chang Xin Zuo,Xiang Ma
出处
期刊:Postgraduate Medical Journal [BMJ]
卷期号:99 (1171): 442-454 被引量:2
标识
DOI:10.1136/postgradmedj-2021-141329
摘要

Our aim was to use the constructed machine learning (ML) models as auxiliary diagnostic tools to improve the diagnostic accuracy of non-ST-elevation myocardial infarction (NSTEMI).A total of 2878 patients were included in this retrospective study, including 1409 patients with NSTEMI and 1469 patients with unstable angina pectoris. The clinical and biochemical characteristics of the patients were used to construct the initial attribute set. SelectKBest algorithm was used to determine the most important features. A feature engineering method was applied to create new features correlated strongly to train ML models and obtain promising results. Based on the experimental dataset, the ML models of extreme gradient boosting, support vector machine, random forest, naïve Bayesian, gradient boosting machines and logistic regression were constructed. Each model was verified by test set data, and the diagnostic performance of each model was comprehensively evaluated.The six ML models based on the training set all play an auxiliary role in the diagnosis of NSTEMI. Although all models taken for comparison performed differences, the extreme gradient boosting ML model performed the best in terms of accuracy rate (0.95±0.014), precision rate (0.94±0.011), recall rate (0.98±0.003) and F-1 score (0.96±0.007) in NSTEMI.The ML model constructed based on clinical data can be used as an auxiliary tool to improve the accuracy of NSTEMI diagnosis. According to our comprehensive evaluation, the performance of the extreme gradient boosting model was the best.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傲娇颖完成签到,获得积分10
刚刚
木木完成签到,获得积分10
2秒前
MHCL完成签到 ,获得积分10
2秒前
补作业的糖豆完成签到,获得积分10
2秒前
2秒前
小锅完成签到,获得积分10
3秒前
霜降完成签到,获得积分10
3秒前
酷波er应助搞怪烨伟采纳,获得10
4秒前
ouo关闭了ouo文献求助
4秒前
呆萌幼晴完成签到,获得积分10
5秒前
ENIX完成签到 ,获得积分10
5秒前
6秒前
安全平静完成签到,获得积分10
8秒前
zhuxiaonian完成签到,获得积分10
8秒前
LXX-k完成签到,获得积分10
9秒前
lll完成签到 ,获得积分10
10秒前
南宫清涟完成签到,获得积分10
10秒前
Leonardi给欢喜的雁枫的求助进行了留言
11秒前
学术骗子小刚完成签到,获得积分10
11秒前
熊泰山完成签到 ,获得积分10
12秒前
谨慎青亦发布了新的文献求助10
12秒前
yoowt完成签到,获得积分10
12秒前
竹羽完成签到 ,获得积分10
12秒前
海绵宝宝完成签到,获得积分10
13秒前
13秒前
苹果黄豆完成签到,获得积分10
13秒前
欢喜可愁完成签到,获得积分10
14秒前
15秒前
RSC完成签到,获得积分10
15秒前
轰车车完成签到,获得积分20
15秒前
zxy完成签到 ,获得积分10
15秒前
abc123完成签到,获得积分10
15秒前
阿和完成签到,获得积分10
16秒前
薯愿完成签到,获得积分10
16秒前
成就大山完成签到,获得积分10
16秒前
木子人衣言若完成签到,获得积分10
19秒前
疗伤烧肉粽完成签到,获得积分10
20秒前
Simmy完成签到,获得积分10
22秒前
野性的采枫完成签到,获得积分10
24秒前
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150742
求助须知:如何正确求助?哪些是违规求助? 2802264
关于积分的说明 7846871
捐赠科研通 2459614
什么是DOI,文献DOI怎么找? 1309322
科研通“疑难数据库(出版商)”最低求助积分说明 628871
版权声明 601757