Machine learning algorithm can provide assistance for the diagnosis of non-ST-segment elevation myocardial infarction

梯度升压 逻辑回归 人工智能 支持向量机 机器学习 医学 随机森林 不稳定型心绞痛 心肌梗塞 朴素贝叶斯分类器 Boosting(机器学习) 算法 计算机科学 内科学
作者
Qin Lian,Quan Qi,Aikeliyaer Ainiwaer,Wenqing Hou,Chang Xin Zuo,Xiang Ma
出处
期刊:Postgraduate Medical Journal [Oxford University Press]
卷期号:99 (1171): 442-454 被引量:5
标识
DOI:10.1136/postgradmedj-2021-141329
摘要

Our aim was to use the constructed machine learning (ML) models as auxiliary diagnostic tools to improve the diagnostic accuracy of non-ST-elevation myocardial infarction (NSTEMI).A total of 2878 patients were included in this retrospective study, including 1409 patients with NSTEMI and 1469 patients with unstable angina pectoris. The clinical and biochemical characteristics of the patients were used to construct the initial attribute set. SelectKBest algorithm was used to determine the most important features. A feature engineering method was applied to create new features correlated strongly to train ML models and obtain promising results. Based on the experimental dataset, the ML models of extreme gradient boosting, support vector machine, random forest, naïve Bayesian, gradient boosting machines and logistic regression were constructed. Each model was verified by test set data, and the diagnostic performance of each model was comprehensively evaluated.The six ML models based on the training set all play an auxiliary role in the diagnosis of NSTEMI. Although all models taken for comparison performed differences, the extreme gradient boosting ML model performed the best in terms of accuracy rate (0.95±0.014), precision rate (0.94±0.011), recall rate (0.98±0.003) and F-1 score (0.96±0.007) in NSTEMI.The ML model constructed based on clinical data can be used as an auxiliary tool to improve the accuracy of NSTEMI diagnosis. According to our comprehensive evaluation, the performance of the extreme gradient boosting model was the best.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡易云发布了新的文献求助100
刚刚
刚刚
ijn关闭了ijn文献求助
刚刚
向东东发布了新的文献求助10
刚刚
hhh发布了新的文献求助10
刚刚
研友_VZG7GZ应助clair采纳,获得20
1秒前
1秒前
淡然冬灵发布了新的文献求助10
1秒前
cheng完成签到,获得积分10
1秒前
2秒前
FashionBoy应助LRR采纳,获得10
2秒前
研友_VZG7GZ应助sc采纳,获得10
2秒前
酷波er应助YY采纳,获得10
3秒前
3秒前
呆萌发布了新的文献求助10
3秒前
4秒前
4秒前
传奇3应助发嗲的飞机采纳,获得10
4秒前
5秒前
可爱的函函应助电池小匠采纳,获得10
5秒前
猪猪hero发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
樱悼柳雪发布了新的文献求助10
7秒前
7秒前
8秒前
fffff发布了新的文献求助10
8秒前
8秒前
淇淇完成签到,获得积分10
8秒前
9秒前
SYLH应助失眠的凝竹采纳,获得10
9秒前
顾矜应助梓歆采纳,获得10
9秒前
9秒前
66135完成签到,获得积分10
9秒前
见雨鱼发布了新的文献求助30
9秒前
10秒前
大个应助shenmexixi采纳,获得10
10秒前
量子星尘发布了新的文献求助150
10秒前
猪猪hero发布了新的文献求助10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974602
求助须知:如何正确求助?哪些是违规求助? 3519026
关于积分的说明 11196787
捐赠科研通 3255127
什么是DOI,文献DOI怎么找? 1797693
邀请新用户注册赠送积分活动 877100
科研通“疑难数据库(出版商)”最低求助积分说明 806130