已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Auditing the AI auditors: A framework for evaluating fairness and bias in high stakes AI predictive models.

审计 心理信息 术语 背景(考古学) 心理学 道德 纪律 社会心理学 计算机科学 数据科学 社会学 政治学 梅德林 会计 业务 古生物学 语言学 哲学 法学 生物 社会科学
作者
Richard N. Landers,Tara S. Behrend
出处
期刊:American Psychologist [American Psychological Association]
卷期号:78 (1): 36-49 被引量:120
标识
DOI:10.1037/amp0000972
摘要

Researchers, governments, ethics watchdogs, and the public are increasingly voicing concerns about unfairness and bias in artificial intelligence (AI)-based decision tools. Psychology's more-than-a-century of research on the measurement of psychological traits and the prediction of human behavior can benefit such conversations, yet psychological researchers often find themselves excluded due to mismatches in terminology, values, and goals across disciplines. In the present paper, we begin to build a shared interdisciplinary understanding of AI fairness and bias by first presenting three major lenses, which vary in focus and prototypicality by discipline, from which to consider relevant issues: (a) individual attitudes, (b) legality, ethicality, and morality, and (c) embedded meanings within technical domains. Using these lenses, we next present psychological audits as a standardized approach for evaluating the fairness and bias of AI systems that make predictions about humans across disciplinary perspectives. We present 12 crucial components to audits across three categories: (a) components related to AI models in terms of their source data, design, development, features, processes, and outputs, (b) components related to how information about models and their applications are presented, discussed, and understood from the perspectives of those employing the algorithm, those affected by decisions made using its predictions, and third-party observers, and (c) meta-components that must be considered across all other auditing components, including cultural context, respect for persons, and the integrity of individual research designs used to support all model developer claims. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刘完成签到,获得积分10
1秒前
Fn完成签到 ,获得积分10
1秒前
和谐续完成签到 ,获得积分10
4秒前
MROU完成签到,获得积分10
7秒前
8秒前
12秒前
18秒前
生信精准科研完成签到,获得积分10
25秒前
123完成签到,获得积分10
26秒前
香蕉觅云应助冰糖雪梨采纳,获得10
27秒前
自觉语琴完成签到 ,获得积分10
40秒前
45秒前
咸鱼完成签到 ,获得积分10
46秒前
semon发布了新的文献求助10
48秒前
充电宝应助111采纳,获得10
49秒前
Claudia应助111采纳,获得10
49秒前
我是站长才怪应助gxz采纳,获得10
51秒前
56秒前
我是站长才怪应助Lizhe采纳,获得10
58秒前
冰糖雪梨发布了新的文献求助10
59秒前
1056720198完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
调研昵称发布了新的文献求助10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
MROU应助科研通管家采纳,获得30
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
zhou完成签到,获得积分10
1分钟前
炒栗子发布了新的文献求助20
1分钟前
1分钟前
zhou发布了新的文献求助10
1分钟前
1分钟前
派大星发布了新的文献求助10
1分钟前
虚心的惮完成签到 ,获得积分10
1分钟前
nessa完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335213
求助须知:如何正确求助?哪些是违规求助? 2964446
关于积分的说明 8613702
捐赠科研通 2643316
什么是DOI,文献DOI怎么找? 1447277
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658948