周动力
微尺度化学
材料科学
体积分数
克里金
多尺度建模
陶瓷
过程(计算)
多孔性
高斯分布
计算机科学
机械
统计物理学
复合材料
机器学习
数学
物理
连续介质力学
化学
数学教育
计算化学
量子力学
操作系统
作者
Ahmed El Tuhami,Shaoping Xiao
标识
DOI:10.1142/s0219876222500256
摘要
In this paper, a micro-to-macro multiscale approach with peridynamics is proposed to study metal-ceramic composites. Since the volume fraction varies in the spatial domain, these composites are called spatially tailored materials (STMs). Microstructure uncertainties, including porosity, are considered at the microscale when conducting peridynamic modeling and simulation. The collected dataset is used to train probabilistic machine learning models via Gaussian process regression, which can stochastically predict material properties. The machine learning models play a role in passing the information from the microscale to the macroscale. Then, at the macroscale, peridynamics is employed to study the mechanics of STM structures with various volume fraction distributions.
科研通智能强力驱动
Strongly Powered by AbleSci AI