Diagnosis of endometrium hyperplasia and screening of endometrial intraepithelial neoplasia in histopathological images using a global-to-local multi-scale convolutional neural network

子宫内膜增生 子宫内膜 卷积神经网络 子宫内膜癌 异型性 医学 增生 病理 人工智能 计算机科学 妇科 内科学 癌症
作者
Fengjun Zhao,Didi Dong,Hongyan Du,Yinan Guo,Xue Su,Zhiwei Wang,Xiaoyang Xie,Mingjuan Wang,Haiyan Zhang,Xin Cao,Xiaowei He
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:221: 106906-106906 被引量:11
标识
DOI:10.1016/j.cmpb.2022.106906
摘要

Endometrial hyperplasia (EH), a uterine pathology characterized by an increased gland-to-stroma ratio compared to normal endometrium (NE), may precede the development of endometrial cancer (EC). Particularly, atypical EH also known as endometrial intraepithelial neoplasia (EIN), has been proven to be a precursor of EC. Thus, diagnosing different EH (EIN, hyperplasia without atypia (HwA) and NE) and screening EIN from non-EIN are crucial for the health of female reproductive system. Computer-aided-diagnosis (CAD) was used to diagnose endometrial histological images based on machine learning and deep learning. However, these studies perform single-scale image analysis and thus can only characterize partial endometrial features. Empirically, both global (cytological changes relative to background) and local features (gland-to-stromal ratio and lesion dimension) are helpful in identifying endometrial lesions.We proposed a global-to-local multi-scale convolutional neural network (G2LNet) to diagnose different EH and to screen EIN in endometrial histological images stained by hematoxylin and eosin (H&E). The G2LNet first used a supervised model in the global part to extract contextual features of endometrial lesions, and simultaneously deployed multi-instance learning in the local part to obtain textural features from multiple image patches. The contextual and textural features were used together to diagnose different endometrial lesions after fusion by a convolutional block attention module. In addition, we visualized the salient regions on both the global image and local images to investigate the interpretability of the model in endometrial diagnosis.In the five-fold cross validation on 7812 H&E images from 467 endometrial specimens, G2LNet achieved an accuracy of 97.01% for EH diagnosis and an area-under-the-curve (AUC) of 0.9902 for EIN screening, significantly higher than state-of-the-arts. In external validation on 1631 H&E images from 135 specimens, G2LNet achieved an accuracy of 95.34% for EH diagnosis, which was comparable to that of a mid-level pathologist (95.71%). Specifically, G2LNet had advantages in diagnosing EIN, while humans performed better in identifying NE and HwA.The developed G2LNet that integrated both the global (contextual) and local (textural) features may help pathologists diagnose endometrial lesions in clinical practices, especially to improve the accuracy and efficiency of screening for precancerous lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助cheng采纳,获得10
刚刚
刚刚
刚刚
刚刚
NexusExplorer应助吴所畏惧采纳,获得10
刚刚
哎嘿发布了新的文献求助10
1秒前
逢考必过完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
ls发布了新的文献求助10
2秒前
psj发布了新的文献求助10
3秒前
桐桐应助束负允三金采纳,获得30
4秒前
疯狂的宛完成签到,获得积分10
4秒前
顺顺黎黎完成签到,获得积分10
4秒前
天马心空完成签到,获得积分10
5秒前
文艺弘文完成签到,获得积分10
5秒前
121314wld发布了新的文献求助10
5秒前
121314wld发布了新的文献求助10
5秒前
121314wld发布了新的文献求助10
5秒前
121314wld发布了新的文献求助10
5秒前
121314wld发布了新的文献求助10
5秒前
121314wld发布了新的文献求助10
5秒前
121314wld发布了新的文献求助10
5秒前
121314wld发布了新的文献求助10
5秒前
121314wld发布了新的文献求助10
5秒前
121314wld发布了新的文献求助10
5秒前
121314wld发布了新的文献求助10
5秒前
121314wld发布了新的文献求助10
5秒前
121314wld发布了新的文献求助10
5秒前
121314wld发布了新的文献求助10
5秒前
121314wld发布了新的文献求助10
5秒前
121314wld发布了新的文献求助10
5秒前
121314wld发布了新的文献求助10
5秒前
121314wld发布了新的文献求助10
5秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
A Dissection Guide & Atlas to the Rabbit 600
中国心血管健康与疾病报告2023(要完整的报告) 500
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3102053
求助须知:如何正确求助?哪些是违规求助? 2753346
关于积分的说明 7623434
捐赠科研通 2406027
什么是DOI,文献DOI怎么找? 1276521
科研通“疑难数据库(出版商)”最低求助积分说明 616877
版权声明 599103