A Transformer based neural network for emotion recognition and visualizations of crucial EEG channels

可解释性 脑电图 计算机科学 模式识别(心理学) 特征提取 人工神经网络 情绪识别 情绪分类 人工智能 语音识别 机器学习 心理学 精神科
作者
Jiayi Guo,Qing Cai,Jian-Peng An,Pei‐Yin Chen,Chao Ma,Jun-He Wan,Zhongke Gao
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:603: 127700-127700 被引量:44
标识
DOI:10.1016/j.physa.2022.127700
摘要

With the rapid development of artificial intelligence and sensor technology, electroencephalogram-based (EEG) emotion recognition has attracted extensive attention. Various deep neural networks have been applied to it and achieved excellent results in classification accuracy. Except for classification accuracy, the interpretability of the feature extraction process is also considerable for model design for emotion recognition. In this study, we propose a novel neural network model (DCoT) with depthwise convolution and Transformer encoders for EEG-based emotion recognition by exploring the dependence of emotion recognition on each EEG channel and visualizing the captured features. Then we conduct subject-dependent and subject-independent experiments on a benchmark dataset, SEED, which contains EEG data of positive, neutral, and negative emotions. For subject-dependent experiments, the average accuracy of three classification tasks is 93.83%. For subject-independent experiments, the average accuracy of three classification tasks is 83.03%. Additionally, we assess the importance of each EEG channel in emotional activities by the DCoT model and visualize it as brain maps. Furthermore, satisfactory results are obtained by utilizing eight selected crucial EEG channels: FT7, T7, TP7, P3, FC6, FT8, T8, and F8, both in two classification tasks and three classification tasks. Using a small number of EEG channels for emotion recognition can reduce equipment costs and computing costs, which is suitable for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
迷路的蛋挞完成签到,获得积分20
刚刚
刚刚
鳗鱼飞松完成签到,获得积分20
1秒前
Owen应助Archer采纳,获得10
1秒前
无风海发布了新的文献求助10
1秒前
DajeVn完成签到,获得积分10
1秒前
赤丶赤发布了新的文献求助10
2秒前
2秒前
赘婿应助xly采纳,获得10
2秒前
可爱的函函应助刘龙强采纳,获得10
2秒前
Frost完成签到,获得积分10
3秒前
MTF完成签到,获得积分20
3秒前
www发布了新的文献求助10
4秒前
4秒前
桃子完成签到,获得积分10
5秒前
清河海风发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
贺呵呵完成签到,获得积分10
5秒前
5秒前
5秒前
7秒前
一念往生完成签到,获得积分10
7秒前
8秒前
Lucas应助zyqsn采纳,获得10
8秒前
打打应助无风海采纳,获得10
8秒前
万能图书馆应助zhang采纳,获得30
9秒前
打打应助小彬采纳,获得10
9秒前
桐桐应助wllom采纳,获得10
9秒前
balabala发布了新的文献求助10
9秒前
SHD完成签到 ,获得积分10
9秒前
复杂的水彤完成签到,获得积分10
10秒前
10秒前
10秒前
养乐多发布了新的文献求助10
10秒前
宇宙少女发布了新的文献求助10
10秒前
香蕉觅云应助兰天采纳,获得30
11秒前
勤恳的箴完成签到 ,获得积分10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978526
求助须知:如何正确求助?哪些是违规求助? 3522634
关于积分的说明 11214133
捐赠科研通 3260065
什么是DOI,文献DOI怎么找? 1799744
邀请新用户注册赠送积分活动 878642
科研通“疑难数据库(出版商)”最低求助积分说明 807002