A Transformer based neural network for emotion recognition and visualizations of crucial EEG channels

可解释性 脑电图 计算机科学 模式识别(心理学) 特征提取 人工神经网络 情绪识别 情绪分类 人工智能 语音识别 机器学习 心理学 精神科
作者
Jiayi Guo,Qing Cai,Jian-Peng An,Pei-Yin Chen,Chao Ma,Jun-He Wan,Zhong-Ke Gao
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:603: 127700-127700 被引量:14
标识
DOI:10.1016/j.physa.2022.127700
摘要

With the rapid development of artificial intelligence and sensor technology, electroencephalogram-based (EEG) emotion recognition has attracted extensive attention. Various deep neural networks have been applied to it and achieved excellent results in classification accuracy. Except for classification accuracy, the interpretability of the feature extraction process is also considerable for model design for emotion recognition. In this study, we propose a novel neural network model (DCoT) with depthwise convolution and Transformer encoders for EEG-based emotion recognition by exploring the dependence of emotion recognition on each EEG channel and visualizing the captured features. Then we conduct subject-dependent and subject-independent experiments on a benchmark dataset, SEED, which contains EEG data of positive, neutral, and negative emotions. For subject-dependent experiments, the average accuracy of three classification tasks is 93.83%. For subject-independent experiments, the average accuracy of three classification tasks is 83.03%. Additionally, we assess the importance of each EEG channel in emotional activities by the DCoT model and visualize it as brain maps. Furthermore, satisfactory results are obtained by utilizing eight selected crucial EEG channels: FT7, T7, TP7, P3, FC6, FT8, T8, and F8, both in two classification tasks and three classification tasks. Using a small number of EEG channels for emotion recognition can reduce equipment costs and computing costs, which is suitable for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助xxxd采纳,获得10
1秒前
Freesia完成签到,获得积分10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得20
2秒前
打打应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
科研通AI2S应助悦耳十三采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
mhl11应助科研通管家采纳,获得10
3秒前
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
沈家宁完成签到,获得积分20
3秒前
liang完成签到,获得积分10
4秒前
will发布了新的文献求助10
4秒前
大模型应助li采纳,获得10
4秒前
斯文败类应助成成采纳,获得10
4秒前
小阳完成签到,获得积分10
5秒前
草帽发布了新的文献求助10
5秒前
6秒前
7秒前
10秒前
10秒前
11秒前
liang发布了新的文献求助10
11秒前
13秒前
田様应助sq1997采纳,获得10
14秒前
Yy发布了新的文献求助10
15秒前
YEM完成签到,获得积分10
15秒前
mminn发布了新的文献求助10
16秒前
17秒前
Rme发布了新的文献求助10
17秒前
手机应助xxx采纳,获得10
18秒前
18秒前
HCLonely应助草帽采纳,获得10
18秒前
完美世界应助草帽采纳,获得10
18秒前
18秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329105
求助须知:如何正确求助?哪些是违规求助? 2958988
关于积分的说明 8593247
捐赠科研通 2637386
什么是DOI,文献DOI怎么找? 1443466
科研通“疑难数据库(出版商)”最低求助积分说明 668734
邀请新用户注册赠送积分活动 656046