A Transformer based neural network for emotion recognition and visualizations of crucial EEG channels

可解释性 脑电图 计算机科学 模式识别(心理学) 特征提取 人工神经网络 情绪识别 情绪分类 人工智能 语音识别 机器学习 心理学 精神科
作者
Jiayi Guo,Qing Cai,Jian-Peng An,Pei‐Yin Chen,Chao Ma,Jun-He Wan,Zhongke Gao
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:603: 127700-127700 被引量:44
标识
DOI:10.1016/j.physa.2022.127700
摘要

With the rapid development of artificial intelligence and sensor technology, electroencephalogram-based (EEG) emotion recognition has attracted extensive attention. Various deep neural networks have been applied to it and achieved excellent results in classification accuracy. Except for classification accuracy, the interpretability of the feature extraction process is also considerable for model design for emotion recognition. In this study, we propose a novel neural network model (DCoT) with depthwise convolution and Transformer encoders for EEG-based emotion recognition by exploring the dependence of emotion recognition on each EEG channel and visualizing the captured features. Then we conduct subject-dependent and subject-independent experiments on a benchmark dataset, SEED, which contains EEG data of positive, neutral, and negative emotions. For subject-dependent experiments, the average accuracy of three classification tasks is 93.83%. For subject-independent experiments, the average accuracy of three classification tasks is 83.03%. Additionally, we assess the importance of each EEG channel in emotional activities by the DCoT model and visualize it as brain maps. Furthermore, satisfactory results are obtained by utilizing eight selected crucial EEG channels: FT7, T7, TP7, P3, FC6, FT8, T8, and F8, both in two classification tasks and three classification tasks. Using a small number of EEG channels for emotion recognition can reduce equipment costs and computing costs, which is suitable for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助黄静采纳,获得30
刚刚
量子星尘发布了新的文献求助10
1秒前
2秒前
Oli发布了新的文献求助30
2秒前
在水一方应助foxuan采纳,获得10
3秒前
4秒前
夏小舟发布了新的文献求助10
5秒前
积极纲发布了新的文献求助10
5秒前
7秒前
晒太阳比赛冠军完成签到 ,获得积分10
7秒前
一一应助Liekkas采纳,获得200
7秒前
liuyi666发布了新的文献求助10
9秒前
10秒前
然来溪完成签到 ,获得积分10
10秒前
zyy0811完成签到,获得积分10
11秒前
12秒前
14秒前
14秒前
17秒前
17秒前
灵巧夏彤完成签到 ,获得积分10
18秒前
ding应助珍珠红茶采纳,获得10
18秒前
先吃一只羊完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
22秒前
搜集达人应助姚裕采纳,获得10
23秒前
zhenyu0430完成签到,获得积分10
23秒前
24秒前
Hhh发布了新的文献求助10
24秒前
JUNLINGDENG完成签到 ,获得积分10
24秒前
晞晞完成签到,获得积分10
25秒前
25秒前
25秒前
26秒前
cora发布了新的文献求助10
26秒前
26秒前
科研通AI6应助枯叶蝶采纳,获得10
27秒前
27秒前
28秒前
zhi发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407027
求助须知:如何正确求助?哪些是违规求助? 4524685
关于积分的说明 14099897
捐赠科研通 4438552
什么是DOI,文献DOI怎么找? 2436342
邀请新用户注册赠送积分活动 1428326
关于科研通互助平台的介绍 1406406