Aircraft robust data-driven multiple sensor fault diagnosis based on optimality criteria

稳健性(进化) 故障检测与隔离 冗余(工程) 故障覆盖率 控制理论(社会学) 计算机科学 算法 工程类 实时计算 可靠性工程 人工智能 电气工程 基因 电子线路 生物化学 执行机构 化学 控制(管理)
作者
Nicholas Cartocci,Marcello R. Napolitano,Gabriele Costante,Paolo Valigi,Mario Luca Fravolini
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:170: 108668-108668 被引量:26
标识
DOI:10.1016/j.ymssp.2021.108668
摘要

A general robust data-driven scheme for the Fault Detection, Isolation and Estimation of multiple sensor faults is proposed and validated using multi-flight data records. Robustness to modelling uncertainty and noise is achieved through an optimized data-driven design of the three blocks that constitute the scheme. First, a robust Fault Detection (FD) filter given by the linear combination of previously identified Analytical Redundancy Relationships (AARs) is derived as the solution of a multi-objective optimization where the minimum fault sensitivity is maximized while the standard deviation (STD) of the filtered error, in nominal condition, is minimized. Then, a Fault Pre-Isolation (FPI) block is introduced to select a restricted number of sensors containing with high likelihood the subset of the faulty sensors. In this phase, robustness is achieved through the data-driven design of a redundant number of Multiple-ARRs and a voting logic. Finally, the robust Fault Isolation (FI) is achieved relying on the design of a large collection of additional AARs whose fault signatures are specifically designed to optimize, at the same time, noise immunity while maximizing the decoupling of the (pre-isolated) fault directions. A procedure based on fault amplitude reconstruction is proposed to isolate the set of faulty sensors sequentially. The proposed scheme has been applied to the design of a multiple Fault Diagnosis scheme for a set of 8 sensors of a semi-autonomous aircraft basing on multi-flight data. Validation results are compared with state-of-the-art multiple Fault Diagnosis schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸢尾完成签到 ,获得积分10
刚刚
刚刚
刚刚
luw2018完成签到,获得积分20
1秒前
陈陈发布了新的文献求助10
1秒前
hyjhhy完成签到,获得积分10
2秒前
黑白完成签到,获得积分10
2秒前
ABBYTHU18完成签到,获得积分10
2秒前
Nicole完成签到 ,获得积分10
2秒前
woshidahunzi发布了新的文献求助10
2秒前
宋嘉新发布了新的文献求助10
3秒前
水的叶子66完成签到,获得积分10
3秒前
似水流年完成签到,获得积分10
3秒前
听风无涯完成签到,获得积分20
4秒前
4秒前
hyjhhy发布了新的文献求助10
5秒前
康康完成签到,获得积分10
6秒前
luw2018发布了新的文献求助10
6秒前
zhangsansan发布了新的文献求助10
6秒前
整齐的电源完成签到 ,获得积分10
6秒前
6秒前
尊敬吐司完成签到,获得积分10
7秒前
领导范儿应助STP顶峰相见采纳,获得10
7秒前
8秒前
油菜花完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助30
8秒前
Jennier完成签到,获得积分20
9秒前
ZXCVB完成签到,获得积分10
9秒前
潜放完成签到,获得积分10
9秒前
棋士发布了新的文献求助10
10秒前
11发布了新的文献求助20
10秒前
courage发布了新的文献求助10
10秒前
辰岚完成签到,获得积分10
11秒前
11秒前
英吉利25发布了新的文献求助10
12秒前
于归故城完成签到,获得积分10
12秒前
zl12345完成签到,获得积分10
12秒前
YY完成签到,获得积分0
13秒前
猪猪hero应助扎心采纳,获得10
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960377
求助须知:如何正确求助?哪些是违规求助? 3506460
关于积分的说明 11130713
捐赠科研通 3238673
什么是DOI,文献DOI怎么找? 1789847
邀请新用户注册赠送积分活动 871964
科研通“疑难数据库(出版商)”最低求助积分说明 803099