Cross-modality reinforcement for unaligned sequences sentiment analysis

模态(人机交互) 计算机科学 模式 情态动词 人工智能 水准点(测量) 语音识别 机器学习 大地测量学 社会科学 社会学 化学 高分子化学 地理
作者
Fan Wang,Shengwei Tian,Long Yu,Jun Long,Tiejun Zhou,Bo Wang,Junwen Wang,Yongtao Wang
标识
DOI:10.3233/jifs-213536
摘要

Human multi-modal emotions analysis includes time series data with different modalities, such as verbal, visual, and auditory. Due to different sampling rates from each modality, the collected data streams are unaligned. The asynchrony cross-modality increases the difficulty of multi-modal fusion. Therefore, we propose a new Cross-Modality Reinforcement model (CMR) based on recent advances in a cross-modality transformer, which performs multi-modal fusion in unaligned multi-modal sequences for emotion prediction. To deal with the long-time dependencies of unaligned sequences, we introduce a time domain aggregation to model the single modal, by aggregating the information in the time dimension, and enhance contextual dependencies. Moreover, a CMR strategy is introduced in our approach.With the main and secondary modalities as inputs to the module, main modal features are strengthened through cross-modality attention and cross-modality gate, and the secondary modality information flows to the main modality potentially, while retaining main modality-specific features and complementing the missing cues. This process gradually learns the common contributing features between the main and secondary modalities and reduces the noise caused by the variability of the modal features. Finally, the enhanced features are used to make predictions about human emotions. We evaluate CMR on two multi-modal sentiment analysis benchmark datasets, and we report the accuracy of 82.7% on the CMU-MOSI and 82.5% and CMU-MOSEI, respectively, which demonstrates our method outperforms current state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
体贴的乐松完成签到,获得积分10
1秒前
lyg完成签到,获得积分10
1秒前
2秒前
yyy完成签到,获得积分10
2秒前
朱先生完成签到 ,获得积分10
3秒前
令狐磬完成签到,获得积分10
4秒前
msy发布了新的文献求助10
4秒前
4秒前
sss完成签到,获得积分10
6秒前
晚街听风完成签到 ,获得积分10
6秒前
木木木木完成签到,获得积分10
7秒前
还原苯醌发布了新的文献求助10
8秒前
张瀚文发布了新的文献求助10
9秒前
研友_LN25rL发布了新的文献求助10
10秒前
11秒前
11秒前
从容映易完成签到,获得积分10
15秒前
yiyi131发布了新的文献求助10
15秒前
16秒前
湘澜完成签到,获得积分10
16秒前
香蕉觅云应助北雁采纳,获得10
16秒前
16秒前
LArry完成签到,获得积分10
16秒前
李健应助风无痕采纳,获得10
20秒前
研友_LN25rL完成签到,获得积分10
20秒前
lucky发布了新的文献求助10
21秒前
21秒前
今后应助慕雪涵采纳,获得10
22秒前
KKWeng完成签到,获得积分10
23秒前
Z1070741749发布了新的文献求助10
26秒前
yiyi131完成签到,获得积分10
26秒前
26秒前
稳重海豚完成签到,获得积分10
28秒前
hu完成签到,获得积分10
28秒前
旺仔完成签到,获得积分10
28秒前
kma完成签到,获得积分10
31秒前
987完成签到,获得积分10
33秒前
34秒前
Valtpus完成签到,获得积分10
34秒前
蛙鼠兔完成签到,获得积分10
35秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464003
求助须知:如何正确求助?哪些是违规求助? 3057207
关于积分的说明 9056164
捐赠科研通 2747262
什么是DOI,文献DOI怎么找? 1507293
科研通“疑难数据库(出版商)”最低求助积分说明 696479
邀请新用户注册赠送积分活动 696004