Prediction of preterm birth using artificial intelligence: a systematic review

医学 人工智能 机器学习 人工神经网络 深度学习 临床实习 产科 计算机科学 家庭医学
作者
Munetoshi Akazawa,Kazunori Hashimoto
出处
期刊:Journal of Obstetrics and Gynaecology [Informa]
卷期号:42 (6): 1662-1668 被引量:19
标识
DOI:10.1080/01443615.2022.2056828
摘要

Preterm birth is the leading cause of neonatal death. It is challenging to predict preterm birth. We elucidated the state of artificial intelligence research on the prediction of preterm birth, clarifying the predictive values and accuracy. We performed a systematic review using three databases (PubMed, Web of Science, and Scopus) in August 2020, with keywords as 'artificial intelligence,' 'deep learning,' 'machine learning,' and 'neural network' combined with 'preterm birth'. We included 22 publications between 2010 and 2020. Regarding the predictive values, electrohysterogram images were mostly used, followed by the biological profiles, the metabolic panel in amniotic fluid or maternal blood, and the cervical images on the ultrasound examination. The size of dataset in most studies was hundred cases and too small for learning, although only three studies used the medical database over a hundred thousand cases. The accuracy was better in the studies using the metabolic panel and electrohysterogram images. Impact statementWhat is already known on this subject? Preterm birth is the leading cause of newborn morbidity and mortality. Presently, the prediction of preterm birth in individual cases is still challenging.What the results of this study add? Using artificial intelligence such as deep learning and machine learning models, clinical data could lead to accurate prediction of preterm birth.What the implications are of these findings for clinical practice and/or further research? The size of the datasets was too small for the models using artificial intelligence in the previous studies. Big data should be prepared for the future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助Revovler采纳,获得10
1秒前
sxc关闭了sxc文献求助
2秒前
红炉点血发布了新的文献求助10
3秒前
4秒前
酷波er应助shlll采纳,获得10
4秒前
彭于晏应助阿树采纳,获得10
4秒前
5秒前
5秒前
万能图书馆应助船长船长采纳,获得10
7秒前
7秒前
Aseaxin完成签到 ,获得积分10
8秒前
有魅力涵双完成签到 ,获得积分10
8秒前
SciGPT应助石龙子采纳,获得10
8秒前
百里太清发布了新的文献求助10
9秒前
10秒前
baixun发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
Revovler发布了新的文献求助10
13秒前
真君山山长完成签到,获得积分10
13秒前
15秒前
15秒前
Ava应助书书子采纳,获得10
15秒前
手机应助九千七采纳,获得10
16秒前
sznrb发布了新的文献求助10
16秒前
16秒前
Kathy应助新用户采纳,获得10
16秒前
深情安青应助流星采纳,获得10
17秒前
Feeee完成签到,获得积分10
17秒前
xx发布了新的文献求助30
17秒前
干净青亦完成签到 ,获得积分10
19秒前
丘比特应助柒柒采纳,获得10
19秒前
石龙子发布了新的文献求助10
21秒前
shlll发布了新的文献求助10
21秒前
斯文败类应助123567采纳,获得10
23秒前
25秒前
黑白灰发布了新的文献求助10
26秒前
26秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329501
求助须知:如何正确求助?哪些是违规求助? 2959146
关于积分的说明 8594396
捐赠科研通 2637597
什么是DOI,文献DOI怎么找? 1443667
科研通“疑难数据库(出版商)”最低求助积分说明 668794
邀请新用户注册赠送积分活动 656220