空战
强化学习
马尔可夫决策过程
部分可观测马尔可夫决策过程
计算机科学
过程(计算)
航程(航空)
人工智能
功能(生物学)
运筹学
马尔可夫过程
工程类
模拟
马尔可夫链
机器学习
马尔可夫模型
航空航天工程
统计
操作系统
数学
进化生物学
生物
作者
Zihao Gong,Yang Xu,Delin Luo
出处
期刊:Unmanned Systems
[World Scientific]
日期:2022-06-17
卷期号:11 (03): 273-286
被引量:10
标识
DOI:10.1142/s2301385023410029
摘要
Focusing on the problem of multi-UAV cooperative air combat decision-making, a multi-UAV cooperative maneuvering decision-making approach is proposed based on multi-agent deep reinforcement learning (MARL) theory. First, the multi-UAV cooperative short-range air combat environment is established. Then, by combining the value-decomposition networks (VDNs) deep reinforcement learning theory with the embedded expert collaborative air combat experience reward function, an air combat cooperative strategy framework is proposed based on the networked decentralized partially observable Markov decision process (NDec-POMDP). The air combat maneuvering strategy is then optimized to improve the cooperative degree between UAVs in cooperative combat scenarios. Finally, multi-UAV cooperative air combat simulations are carried out and the results show the feasibility and effectiveness of the proposed cooperative air combat decision-making framework and method.
科研通智能强力驱动
Strongly Powered by AbleSci AI