A canopy photosynthesis model based on a highly generalizable artificial neural network incorporated with a mechanistic understanding of single-leaf photosynthesis

天蓬 叶面积指数 经验模型 光合作用 环境科学 人工神经网络 光合有效辐射 计算机科学 生物系统 人工智能 生态学 植物 生物 模拟
作者
Takahiro Kondo,Kazuko H. Nomura,Daisuke Yasutake,Tadashige Iwao,Takashi Okayasu,Yukio Ozaki,Masato Mori,Tomoyoshi Hirota,Masaharu Kitano
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:323: 109036-109036 被引量:11
标识
DOI:10.1016/j.agrformet.2022.109036
摘要

Crop productivity is largely dependent on canopy photosynthesis, which is difficult to measure at farming sites. Therefore, real-time estimation of the canopy photosynthetic rate (Ac) is expected to facilitate effective farm management. For the estimation of Ac, two types of mathematical models (i.e., process-based models and empirical models) have been used, although both types have their own weaknesses. Process-based models inevitably require many model parameters that are difficult to identify, while empirical models, including artificial neural network (ANN) models, have a low predictive ability outside of the range of training datasets. To overcome these weaknesses, we developed a hybrid canopy photosynthesis model that included components of both process-based models and ANN models. In this hybrid model, the single-leaf photosynthetic rate (AL) and leaf area index (LAI) were first estimated from information easily obtainable at farming sites: AL was estimated by the process-based model of AL (i.e., the biochemical photosynthesis model of Farquhar et al. (1980)) from environmental data (photosynthetic photon flux density (PPFD), air temperature (Ta), humidity, and atmospheric CO2 concentration (Ca)), and the LAI was estimated by an analysis of crop canopy imagery. As highly explainable information for Ac, the estimated AL and LAI were input into the ANN model to estimate Ac. As such, the ANN model learned the logical relationships between the inputs (AL and LAI) and the output (Ac). Detailed validation analysis using nine spinach Ac datasets revealed that the hybrid ANN model can estimate Ac accurately throughout the whole growth period, even when training and test datasets were obtained in different seasons under different CO2 concentrations and based on training datasets of only three days. This study highlights the high generalizability of the hybrid ANN model, which is a prerequisite for practical application in environmentally controlled crop production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
李健应助学术智子采纳,获得10
2秒前
余空发布了新的文献求助10
2秒前
桐桐应助芝士椰果采纳,获得10
2秒前
3秒前
乐乐应助心想事成采纳,获得10
3秒前
IBMffff发布了新的文献求助30
3秒前
...发布了新的文献求助10
4秒前
耶格尔完成签到 ,获得积分10
4秒前
积极嚓茶完成签到,获得积分10
5秒前
五六七发布了新的文献求助10
6秒前
感性的大楚完成签到 ,获得积分10
8秒前
九九九完成签到,获得积分20
10秒前
zuhangzhao完成签到 ,获得积分10
12秒前
12秒前
很靠近海完成签到,获得积分10
13秒前
13秒前
简单的银耳汤完成签到,获得积分10
13秒前
15秒前
15秒前
孟子豪完成签到,获得积分10
15秒前
16秒前
欣喜的薯片完成签到 ,获得积分10
17秒前
kyt完成签到 ,获得积分10
17秒前
17秒前
17秒前
爱静静应助乐观的颦采纳,获得200
18秒前
18秒前
浮生发布了新的文献求助10
18秒前
xiaoya927217发布了新的文献求助10
18秒前
可靠盼旋发布了新的文献求助10
19秒前
绿竹完成签到,获得积分10
19秒前
心想事成发布了新的文献求助10
20秒前
20秒前
ertredffg完成签到,获得积分10
20秒前
Liam发布了新的文献求助10
21秒前
damai完成签到,获得积分10
22秒前
二世小卒完成签到 ,获得积分10
24秒前
Hollen发布了新的文献求助30
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242146
求助须知:如何正确求助?哪些是违规求助? 2886591
关于积分的说明 8243909
捐赠科研通 2555131
什么是DOI,文献DOI怎么找? 1383250
科研通“疑难数据库(出版商)”最低求助积分说明 649672
邀请新用户注册赠送积分活动 625469