A canopy photosynthesis model based on a highly generalizable artificial neural network incorporated with a mechanistic understanding of single-leaf photosynthesis

天蓬 叶面积指数 经验模型 光合作用 环境科学 人工神经网络 光合有效辐射 计算机科学 生物系统 人工智能 生态学 植物 生物 模拟
作者
Takahiro Kondo,Kazuko H. Nomura,Daisuke Yasutake,Tadashige Iwao,Takashi Okayasu,Yukio Ozaki,Masato Mori,Tomoyoshi Hirota,Masaharu Kitano
出处
期刊:Agricultural and Forest Meteorology [Elsevier BV]
卷期号:323: 109036-109036 被引量:11
标识
DOI:10.1016/j.agrformet.2022.109036
摘要

Crop productivity is largely dependent on canopy photosynthesis, which is difficult to measure at farming sites. Therefore, real-time estimation of the canopy photosynthetic rate (Ac) is expected to facilitate effective farm management. For the estimation of Ac, two types of mathematical models (i.e., process-based models and empirical models) have been used, although both types have their own weaknesses. Process-based models inevitably require many model parameters that are difficult to identify, while empirical models, including artificial neural network (ANN) models, have a low predictive ability outside of the range of training datasets. To overcome these weaknesses, we developed a hybrid canopy photosynthesis model that included components of both process-based models and ANN models. In this hybrid model, the single-leaf photosynthetic rate (AL) and leaf area index (LAI) were first estimated from information easily obtainable at farming sites: AL was estimated by the process-based model of AL (i.e., the biochemical photosynthesis model of Farquhar et al. (1980)) from environmental data (photosynthetic photon flux density (PPFD), air temperature (Ta), humidity, and atmospheric CO2 concentration (Ca)), and the LAI was estimated by an analysis of crop canopy imagery. As highly explainable information for Ac, the estimated AL and LAI were input into the ANN model to estimate Ac. As such, the ANN model learned the logical relationships between the inputs (AL and LAI) and the output (Ac). Detailed validation analysis using nine spinach Ac datasets revealed that the hybrid ANN model can estimate Ac accurately throughout the whole growth period, even when training and test datasets were obtained in different seasons under different CO2 concentrations and based on training datasets of only three days. This study highlights the high generalizability of the hybrid ANN model, which is a prerequisite for practical application in environmentally controlled crop production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故意的自行车完成签到,获得积分20
刚刚
lonf完成签到,获得积分10
1秒前
整齐的豪英完成签到,获得积分10
1秒前
田様应助路哈哈采纳,获得10
3秒前
大模型应助胖墩儿驾到采纳,获得30
4秒前
5秒前
6秒前
ximo完成签到,获得积分10
6秒前
6秒前
sherry完成签到,获得积分10
7秒前
7秒前
小醒发布了新的文献求助10
7秒前
Rondab应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
斯文明杰发布了新的文献求助10
7秒前
大个应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得30
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
8秒前
卡卡西应助科研通管家采纳,获得10
8秒前
梅梅梅应助科研通管家采纳,获得10
8秒前
香蕉觅云应助井冬采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
Rondab应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
dong应助科研通管家采纳,获得10
8秒前
8秒前
zhongu应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
萌兰134发布了新的文献求助10
8秒前
Lucas应助阿尔法贝塔采纳,获得10
9秒前
10秒前
可爱的函函应助Alan采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958968
求助须知:如何正确求助?哪些是违规求助? 3505216
关于积分的说明 11123184
捐赠科研通 3236828
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871455
科研通“疑难数据库(出版商)”最低求助积分说明 802794