纤维素
木质素
生物炭
吸附
化学
氧气
核化学
有机化学
化学工程
热解
工程类
作者
Yongzhong Feng,Xiaoyi Qiu,Zhuolin Tao,E Zhengyang,Jiayu Song,Yaqiong Dong,Jianjun Liang,Ping Li,Qiaohui Fan
标识
DOI:10.1007/s11356-022-20981-w
摘要
The adsorption behaviors of cellulose and lignin biochar depend on the evolution of their oxygen-containing groups to some extent. In this study, cellulose-rich pakchoi and lignin-rich corncob were selected to prepare the pyrolytic biochar at variable temperatures, named PBC and CBC, respectively. Their structure-function relationships were in-depth studied via the combination of the adsorption experiments of U(VI) and comprehensive spectral analyses. The maximal adsorption capacity of PBC 300, obtained at 300 °C, was measured as 46.62 mg g-1 for U(VI), which was ⁓1.3 times higher than 35.60 mg g-1 of CBC 300. U(VI) adsorption on PBC and CBC were predominantly ascribed to the coordination interaction between oxygen-containing groups and U(VI). Interestingly, the main complexation groups were distinct in both biochars due to the different inherent evolutions of cellulose and lignin. Volatile d-glucose chains in cellulose were apt to degrade rapidly, and the formed carboxyls acted as the most important sites in PBC. However, the stable aromatic network in lignin led to a slow degradation, and more hydroxyls thus remained in CBC, which controlled U(VI) adsorption. In this study, we obtained greatly cost-effective adsorbents of U(VI) and provided some essential insights into understanding the structural evolution-function relationship of cellulose and lignin biochar.
科研通智能强力驱动
Strongly Powered by AbleSci AI