Mendelian Randomization

孟德尔随机化 随机化 生物 遗传学 医学 内科学 遗传变异 随机对照试验 基因型 基因
作者
Sandeep Grover,Fabiola Del Greco M,Catherine M. Stein,Andreas Ziegler
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 581-628 被引量:124
标识
DOI:10.1007/978-1-4939-7274-6_29
摘要

Confounding and reverse causality have prevented us from drawing meaningful clinical interpretation even in well-powered observational studies. Confounding may be attributed to our inability to randomize the exposure variable in observational studies. Mendelian randomization (MR) is one approach to overcome confounding. It utilizes one or more genetic polymorphisms as a proxy for the exposure variable of interest. Polymorphisms are randomly distributed in a population, they are static throughout an individual’s lifetime, and may thus help in inferring directionality in exposure–outcome associations. Genome-wide association studies (GWAS) or meta-analyses of GWAS are characterized by large sample sizes and the availability of many single nucleotide polymorphisms (SNPs), making GWAS-based MR an attractive approach. GWAS-based MR comes with specific challenges, including multiple causality. Despite shortcomings, it still remains one of the most powerful techniques for inferring causality. With MR still an evolving concept with complex statistical challenges, the literature is relatively scarce in terms of providing working examples incorporating real datasets. In this chapter, we provide a step-by-step guide for causal inference based on the principles of MR with a real dataset using both individual and summary data from unrelated individuals. We suggest best possible practices and give recommendations based on the current literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
baiye发布了新的文献求助30
2秒前
糊涂的含卉完成签到,获得积分10
3秒前
明亮幻枫应助RL采纳,获得10
3秒前
nightmare完成签到,获得积分20
3秒前
负责的方盒完成签到,获得积分10
3秒前
SBoot完成签到,获得积分10
3秒前
4秒前
4秒前
科研通AI5应助researcher采纳,获得10
5秒前
nightmare发布了新的文献求助10
6秒前
MooN发布了新的文献求助10
6秒前
瘦瘦听云发布了新的文献求助10
7秒前
xiaomou完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
我请问呢发布了新的文献求助10
10秒前
10秒前
fffff完成签到,获得积分10
10秒前
11秒前
Ava应助moonlight采纳,获得10
12秒前
爆米花应助WATQ采纳,获得50
13秒前
陈慕枫完成签到,获得积分10
13秒前
Shen完成签到,获得积分10
13秒前
耳机单蹦完成签到,获得积分10
15秒前
15秒前
南天发布了新的文献求助20
16秒前
心肝宝贝甜蜜饯完成签到,获得积分10
16秒前
16秒前
17秒前
shilong.yang发布了新的文献求助20
17秒前
18秒前
OMG完成签到,获得积分10
19秒前
iNk应助背后问夏采纳,获得20
19秒前
19秒前
科研通AI6应助二三采纳,获得10
19秒前
20秒前
我请问呢完成签到,获得积分10
20秒前
核武虎发布了新的文献求助10
22秒前
大模型应助awu采纳,获得10
23秒前
鹿鹿发布了新的文献求助10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5152831
求助须知:如何正确求助?哪些是违规求助? 4348565
关于积分的说明 13539680
捐赠科研通 4190958
什么是DOI,文献DOI怎么找? 2298523
邀请新用户注册赠送积分活动 1298660
关于科研通互助平台的介绍 1243519