Mendelian Randomization

孟德尔随机化 随机化 生物 遗传学 医学 内科学 遗传变异 随机对照试验 基因型 基因
作者
Sandeep Grover,Fabiola Del Greco M,Catherine M. Stein,Andreas Ziegler
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 581-628 被引量:124
标识
DOI:10.1007/978-1-4939-7274-6_29
摘要

Confounding and reverse causality have prevented us from drawing meaningful clinical interpretation even in well-powered observational studies. Confounding may be attributed to our inability to randomize the exposure variable in observational studies. Mendelian randomization (MR) is one approach to overcome confounding. It utilizes one or more genetic polymorphisms as a proxy for the exposure variable of interest. Polymorphisms are randomly distributed in a population, they are static throughout an individual’s lifetime, and may thus help in inferring directionality in exposure–outcome associations. Genome-wide association studies (GWAS) or meta-analyses of GWAS are characterized by large sample sizes and the availability of many single nucleotide polymorphisms (SNPs), making GWAS-based MR an attractive approach. GWAS-based MR comes with specific challenges, including multiple causality. Despite shortcomings, it still remains one of the most powerful techniques for inferring causality. With MR still an evolving concept with complex statistical challenges, the literature is relatively scarce in terms of providing working examples incorporating real datasets. In this chapter, we provide a step-by-step guide for causal inference based on the principles of MR with a real dataset using both individual and summary data from unrelated individuals. We suggest best possible practices and give recommendations based on the current literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张宇豪完成签到,获得积分10
刚刚
完美世界应助哈哈哈采纳,获得10
刚刚
刚刚
1秒前
1秒前
Owen应助jun采纳,获得10
2秒前
nan发布了新的文献求助10
2秒前
HearbaRtNDY完成签到,获得积分10
3秒前
深情安青应助ooox采纳,获得10
3秒前
3秒前
善学以致用应助柚子采纳,获得10
4秒前
大聪明完成签到,获得积分10
4秒前
华仔应助墨客采纳,获得10
4秒前
李健的小迷弟应助010-LYN采纳,获得10
4秒前
耶耶完成签到,获得积分10
5秒前
5秒前
charllar发布了新的文献求助10
5秒前
123发布了新的文献求助10
5秒前
无极微光应助灼灼采纳,获得20
5秒前
zll990102关注了科研通微信公众号
6秒前
大聪明发布了新的文献求助10
6秒前
7秒前
8秒前
小星星发布了新的文献求助20
8秒前
白阳完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
脑洞疼应助一朵小鲜花儿采纳,获得10
9秒前
nan完成签到,获得积分10
10秒前
gewenxue发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助20
10秒前
10秒前
kendrick677发布了新的文献求助10
10秒前
11秒前
11秒前
大海发布了新的文献求助10
11秒前
clvv发布了新的文献求助10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531780
求助须知:如何正确求助?哪些是违规求助? 4620574
关于积分的说明 14573778
捐赠科研通 4560339
什么是DOI,文献DOI怎么找? 2498813
邀请新用户注册赠送积分活动 1478687
关于科研通互助平台的介绍 1450049