黄芩苷
偏最小二乘回归
近红外光谱
均方误差
职位(财务)
光谱学
色谱法
瓶子
分析化学(期刊)
化学
材料科学
数学
高效液相色谱法
光学
统计
物理
财务
经济
复合材料
量子力学
作者
Pengdi Cui,Qiuyue Wang,Zheng Li,Chenlu Wu,Gang Li,Jing Zhao,Ming Liu
标识
DOI:10.1016/j.saa.2022.121120
摘要
The ultimate goal of the study is to present a strategy to improve the accuracy of near-infrared spectroscopy detection of Shuanghuanglian oral liquid in glass bottles without damaging the primary packaging. we adopted the multi-position spectral modeling (MPSM) method to correct the spectral variation caused by the difference of bottle and measuring position, so as to improve the measurement accuracy and find the best site combination for measuring Shuanghuanglian oral liquid. Baicalin, total flavonoids and soluble solid contents were considered as the quality indicators of the oral liquid, and partial least squares (PLS) models were employed for the single-position and multi-position spectra, respectively. The root mean square error of the validation set (RMSEP) of the optimum multi-position models are 0.7412 mg/mL for baicalin, 1.1259 mg/mL for total flavonoids and 0.9491% for soluble solids contents. Compared with the traditional single-position spectral modeling method (SPSM method), MPSM method improved the prediction accuracy of baicalin, total flavonoids and soluble solid contents by 26.84%, 31.97% and 58.14% respectively. The results showed that the MPSM method can improve the measurement accuracy of bottled oral liquid and is an effective method to eliminate the uncertainty of measurement conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI