Multilayer patent citation networks: A comprehensive analytical framework for studying explicit technological relationships

引用 计算机科学 数据科学 背景(考古学) 互补性(分子生物学) 元数据 万维网 地理 遗传学 考古 生物
作者
Kyle Higham,Martina Contisciani,Caterina De Bacco
出处
期刊:Technological Forecasting and Social Change [Elsevier]
卷期号:179: 121628-121628 被引量:16
标识
DOI:10.1016/j.techfore.2022.121628
摘要

• Patent citation networks are conceptually framed as multilayer networks, wherein nodes are patent families linked across jurisdictions. • Citation contexts, such as citing office and citation type, naturally form the layers within this network. • Layers are found to be complementary rather than redundant with respect to their technological information content. • Multilayer network communities are found to contain more nuanced and technologically-relevant information than their single-layer analogues. • Extending conventional patent citation networks to analytical settings that allow more comprehensive and realistic representations of technological relationships appears to be a promising avenue of research. The use of patent citation networks as research tools is becoming increasingly commonplace in the field of innovation studies. However, these networks rarely consider the contexts in which these citations are generated and are generally restricted to a single jurisdiction. Here, we propose and explore the use of a multilayer network framework that can naturally incorporate citation metadata and stretch across jurisdictions, allowing for a complete view of the global technological landscape that is accessible through patent data. Taking a conservative approach that links citation network layers through triadic patent families, we first observe that these layers contain complementary, rather than redundant, information about technological relationships. To probe the nature of this complementarity, we extract network communities from both the multilayer network and analogous single-layer networks, then directly compare their technological composition with established technological similarity networks. We find that while technologies are more splintered across communities in the multilayer case, the extracted communities match much more closely the established networks. We conclude that by capturing citation context, a multilayer representation of patent citation networks is, conceptually and empirically, better able to capture the significant nuance that exists in real technological relationships when compared to traditional, single-layer approaches. We suggest future avenues of research that take advantage of novel computational tools designed for use with multilayer networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难过板栗发布了新的文献求助10
刚刚
斯文败类应助shuofeng采纳,获得10
1秒前
高高的夜梅完成签到,获得积分20
2秒前
Vivian_Zhang应助zzz采纳,获得10
2秒前
橘子味完成签到,获得积分10
2秒前
aniu发布了新的文献求助10
2秒前
Rainnnn完成签到,获得积分20
2秒前
2秒前
why完成签到,获得积分10
3秒前
顾北完成签到,获得积分10
3秒前
斑布发布了新的文献求助10
3秒前
科研通AI6应助新嘟采纳,获得10
3秒前
LL77完成签到 ,获得积分10
3秒前
3秒前
lijia3发布了新的文献求助10
4秒前
彭于晏应助高高的冰绿采纳,获得10
4秒前
完美世界应助Simms采纳,获得10
4秒前
英姑应助Sitroul采纳,获得10
4秒前
4秒前
健忘芷发布了新的文献求助20
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
lijs给lijs的求助进行了留言
5秒前
终醒发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
我是老大应助ZZZ采纳,获得10
6秒前
nikiniki完成签到,获得积分20
6秒前
王m完成签到,获得积分10
7秒前
7秒前
残月初升完成签到,获得积分10
7秒前
Rainnnn发布了新的文献求助10
7秒前
莓气泄露发布了新的文献求助10
7秒前
7秒前
gaterina发布了新的文献求助10
8秒前
乖乖猫完成签到,获得积分10
8秒前
kao2oak完成签到 ,获得积分10
8秒前
8秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401