亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A morphometric analysis of the osteocyte canaliculus using applied automatic semantic segmentation by machine learning

骨细胞 骨小管 分割 人工智能 计算机科学 生物医学工程 材料科学 解剖 计算机视觉 模式识别(心理学)
作者
Kaori Tabata,Mana Hashimoto,Haruka Takahashi,Ziyi Wang,Noriyuki Nagaoka,Toru Hara,Hiroshi Kamioka
出处
期刊:Journal of Bone and Mineral Metabolism [Springer Science+Business Media]
标识
DOI:10.1007/s00774-022-01321-x
摘要

IntroductionOsteocytes play a role as mechanosensory cells by sensing flow-induced mechanical stimuli applied on their cell processes. High-resolution imaging of osteocyte processes and the canalicular wall are necessary for the analysis of this mechanosensing mechanism. Focused ion beam-scanning electron microscopy (FIB-SEM) enabled the visualization of the structure at the nanometer scale with thousands of serial-section SEM images. We applied machine learning for the automatic semantic segmentation of osteocyte processes and canalicular wall and performed a morphometric analysis using three-dimensionally reconstructed images.Materials and methodsSix-week-old-mice femur were used. Osteocyte processes and canaliculi were observed at a resolution of 2 nm/voxel in a 4 × 4 μm region with 2000 serial-section SEM images. Machine learning was used for automatic semantic segmentation of the osteocyte processes and canaliculi from serial-section SEM images. The results of semantic segmentation were evaluated using the dice similarity coefficient (DSC). The segmented data were reconstructed to create three-dimensional images and a morphological analysis was performed.ResultsThe DSC was > 83%. Using the segmented data, a three-dimensional image of approximately 3.5 μm in length was reconstructed. The morphometric analysis revealed that the median osteocyte process diameter was 73.8 ± 18.0 nm, and the median pericellular fluid space around the osteocyte process was 40.0 ± 17.5 nm.ConclusionWe used machine learning for the semantic segmentation of osteocyte processes and canalicular wall for the first time, and performed a morphological analysis using three-dimensionally reconstructed images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一梦完成签到,获得积分10
2秒前
欢呼的续关注了科研通微信公众号
16秒前
量子星尘发布了新的文献求助10
39秒前
成就灵波完成签到,获得积分10
51秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得30
1分钟前
alex_zhao完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
jzz应助yyy采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
不秃燃的小老弟完成签到 ,获得积分10
2分钟前
完美世界应助xyx采纳,获得10
2分钟前
领导范儿应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
3分钟前
核桃应助王果果采纳,获得10
3分钟前
3分钟前
王果果完成签到,获得积分10
3分钟前
xyx发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
luandouing完成签到,获得积分10
4分钟前
5分钟前
5分钟前
jiaaniu完成签到 ,获得积分10
5分钟前
5分钟前
玛琳卡迪马完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
四斤瓜完成签到 ,获得积分10
6分钟前
6分钟前
欢呼沅发布了新的文献求助10
6分钟前
juan完成签到 ,获得积分10
6分钟前
斯文败类应助欢呼沅采纳,获得10
6分钟前
7分钟前
诗乃发布了新的文献求助10
7分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015194
求助须知:如何正确求助?哪些是违规求助? 3555161
关于积分的说明 11317925
捐赠科研通 3288594
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983