力谱学
严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)
2019年冠状病毒病(COVID-19)
受体
化学
生物物理学
2019-20冠状病毒爆发
血浆蛋白结合
阻塞(统计)
中和抗体
病毒
细胞生物学
病毒学
生物
分子
生物化学
医学
计算机科学
疾病
有机化学
病理
爆发
传染病(医学专业)
计算机网络
作者
Magnus S. Bauer,Sophia Gruber,Adina Hausch,Priscila da Silva Figueiredo Celestino Gomes,Lukas F. Milles,Thomas Nicolaus,Leonard C. Schendel,Pilar López Navajas,Erik Procko,Daniel Lietha,Marcelo C. R. Melo,Rafael C. Bernardi,Hermann E. Gaub,Jan Lipfert
标识
DOI:10.1073/pnas.2114397119
摘要
SignificanceIn the dynamic environment of the airways, where SARS-CoV-2 infections are initiated by binding to human host receptor ACE2, mechanical stability of the viral attachment is a crucial fitness advantage. Using single-molecule force spectroscopy techniques, we mimic the effect of coughing and sneezing, thereby testing the force stability of SARS-CoV-2 RBD:ACE2 interaction under physiological conditions. Our results reveal a higher force stability of SARS-CoV-2 binding to ACE2 compared to SARS-CoV-1, causing a possible fitness advantage. Our assay is sensitive to blocking agents preventing RBD:ACE2 bond formation. It will thus provide a powerful approach to investigate the modes of action of neutralizing antibodies and other agents designed to block RBD binding to ACE2 that are currently developed as potential COVID-19 therapeutics.
科研通智能强力驱动
Strongly Powered by AbleSci AI