Deep Learning in Robotics for Strengthening Industry 4.0.: Opportunities, Challenges and Future Directions

人工智能 机器人学 深度学习 机器人 工程类 计算机科学 可用的 工程管理 数据科学 多媒体
作者
Kriti Aggarwal,Sunil K. Singh,Muskaan Chopra,Sudhakar Kumar,Francesco Colace
出处
期刊:Studies in computational intelligence 卷期号:: 1-19 被引量:10
标识
DOI:10.1007/978-3-030-96737-6_1
摘要

The twenty-first century is undergoing a fundamental transition in the way things are created and services are provided. The digitalization of services has resulted in a compelling, major change in the sector, which is now referred to as Industry 4.0. One of the major changes embracing this industrial revolution is the development of robotics. Today, with the tasks becoming increasingly complex, robots are more trusted to perform the tasks with accuracy. They are rapidly substituting human skills in terms of speed, accuracy, and replaceability. Over the years, they have made vital contributions to some of the major industries, like 3D printing, autonomous vehicles, computer chip building, health and safety, agriculture, and so on. Robotics is a key Industry 4.0 technology that gives significant possibilities in the realm of production. However, with the introduction of Industry 4.0, it has become increasingly impossible for a corporation to remain relevant without incorporating some type of intelligent technology. Big data, which is generated by a wide range of sensors, necessitates complicated systems capable of distilling usable information and making intelligent judgments. This is where technology such as artificial intelligence and deep learning may help. The major result of combining these technologies with modern robotics is the creation of intelligent factories that are very powerful, safe, and cost-effective. The current research discussed the function of deep learning in robots for bolstering Industry 4.0. The authors discussed the various ways in which deep learning algorithms may be employed to improve the performance of robotics systems. Object identification, robotic grip, acoustic modelling, and motion control are the four key subjects covered in the article. A subsequent study discusses some of the significant problems for the same.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李大仁完成签到,获得积分10
刚刚
斯人完成签到,获得积分10
1秒前
NIN完成签到 ,获得积分10
1秒前
1秒前
要减肥的砖头完成签到,获得积分10
1秒前
1秒前
氿囶发布了新的文献求助10
1秒前
桐桐应助陈嘻嘻嘻嘻采纳,获得10
2秒前
852应助~~采纳,获得10
2秒前
深情安青应助清秀嫣娆采纳,获得10
3秒前
CipherSage应助xjwang采纳,获得10
4秒前
告非Goffee完成签到,获得积分10
5秒前
5秒前
传奇3应助流年勿空采纳,获得10
5秒前
大山发布了新的文献求助10
6秒前
6秒前
6秒前
ANDUIN完成签到,获得积分10
7秒前
wanci应助TK采纳,获得10
9秒前
Murphy~完成签到,获得积分10
9秒前
9秒前
情怀应助尔沁采纳,获得10
9秒前
10秒前
稳定上分发布了新的文献求助10
10秒前
小蘑菇应助July采纳,获得10
10秒前
脸脸发布了新的文献求助20
10秒前
明理采珊发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
鳗鱼续完成签到,获得积分10
12秒前
氿囶完成签到,获得积分10
12秒前
阔达的乌冬面完成签到 ,获得积分10
13秒前
杏里应助俊逸映梦采纳,获得10
13秒前
5114发布了新的文献求助10
13秒前
wanci应助会鹅鹅鹅的鹅采纳,获得10
13秒前
NexusExplorer应助研友_38KgB8采纳,获得10
13秒前
ZYJ完成签到 ,获得积分10
14秒前
田一发布了新的文献求助10
16秒前
mhl11应助lx采纳,获得10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305763
求助须知:如何正确求助?哪些是违规求助? 2939395
关于积分的说明 8493534
捐赠科研通 2613845
什么是DOI,文献DOI怎么找? 1427668
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647945