幼虫
生物
龄期
蛹
蜕皮
表皮(毛发)
基因敲除
酪氨酸羟化酶
变形
植物
芳香族L-氨基酸脱羧酶
动物
多巴胺
遗传学
内分泌学
基因
作者
Long‐Ji Ze,Pei Wang,Yingchuan Peng,Lin Jin,Guo‐Qing Li
摘要
The 28-spotted potato ladybird, Henosepilachna vigintioctopunctata, is a notorious defoliator of many solanaceous and cucurbitaceous plants. Tyrosine hydroxylase (TH) and dopa decarboxylase (DDC) are responsible for cuticle tanning pathway in insects.We identified HvTH and HvDDC in H. vigintioctopunctata, and found that high levels of them were accumulated just before or right after molting. Injection of dsHvTH or feeding 3-iodo-tyrosine (3-IT) at the third instar larval stage repressed tanning of the larval cuticle, reduced larval feeding, inhibited larval growth, and consequently caused 100% of larval mortality. Knockdown of HvDDC at the third instar larval stage hardly affected the coloration of larval head, and partially inhibited pigmentation of larval bodies and around 80% of the HvDDC RNAi larvae developed into albino pupae and adults. Moreover, depletion of HvTH or HvDDC at the fourth instar larval stage resulted in albino pupae and adults. The HvTH or HvDDC hypomorph adults fully or partially failed to remove the larval/pupal exuviae, possessed pale and abnormal wings, and poorly tanned heads and bodies, and eventually, struggled for several days without feeding on leaves before death.These results show that TH and DDC play key roles in larval and adult cuticle tanning and development in H. vigintioctopunctata. Also, these findings suggest that dopa- and dopamine-originated pigments are essential for larval and adult feeding behavior and the molting process during emergence. © 2022 Society of Chemical Industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI