Estimating associations between annual concentrations of particulate matter and mortality in the US, using data linkage and Bayesian Maximum Entropy

人口学 混淆 置信区间 死亡率 统计 医学 贝叶斯概率
作者
Jacqueline E Rudolph,Stephen R Cole,Jessie K Edwards,Eric A Whitsel,Marc L Serre,David B Richardson
出处
期刊:Epidemiology [Ovid Technologies (Wolters Kluwer)]
卷期号:Publish Ahead of Print
标识
DOI:10.1097/ede.0000000000001447
摘要

Exposure to fine particulate matter (PM2.5) is an established risk factor for human mortality. However, previous US studies have been limited to select cities or regions or to population subsets (e.g., older adults).Here, we demonstrate how to use the novel geostatistical method Bayesian maximum entropy to obtain estimates of PM2.5 concentrations in all contiguous US counties, 2000-2016. We then demonstrate how one could use these estimates in a traditional epidemiologic analysis examining the association between PM2.5 and rates of all-cause, cardiovascular, respiratory, and (as a negative control outcome) accidental mortality.We estimated that, for a 1 log(μg/m3) increase in PM2.5 concentration, the conditional all-cause mortality incidence rate ratio (IRR) was 1.029 (95% confidence interval [CI]: 1.006, 1.053). This implies that the rate of all-cause mortality at 10 µg/m3 would be 1.020 times the rate at 5 µg/m3. IRRs were larger for cardiovascular mortality than for all-cause mortality in all gender and race-ethnicity groups. We observed larger IRRs for all-cause, nonaccidental, and respiratory mortality in Black non-Hispanic Americans than White non-Hispanic Americans. However, our negative control analysis indicated the possibility for unmeasured confounding.We used a novel method that allowed us to estimate PM2.5 concentrations in all contiguous US counties and obtained estimates of the association between PM2.5 and mortality comparable to previous studies. Our analysis provides one example of how Bayesian maximum entropy could be used in epidemiologic analyses; future work could explore other ways to use this approach to inform important public health questions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fionazhangdr完成签到 ,获得积分10
1秒前
1秒前
研友_LMo56Z发布了新的文献求助30
1秒前
engine发布了新的文献求助10
1秒前
1秒前
小蘑菇应助uniseen采纳,获得10
2秒前
达落完成签到,获得积分10
2秒前
2秒前
六六发布了新的文献求助10
3秒前
3秒前
糕手发布了新的文献求助10
3秒前
4秒前
冷酷凝梦发布了新的文献求助10
4秒前
4秒前
Owen应助斯人采纳,获得10
4秒前
4秒前
4秒前
JD完成签到,获得积分10
4秒前
自觉翠安完成签到,获得积分10
5秒前
朴素的小霸王完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
ding应助健康的绮晴采纳,获得10
6秒前
科研通AI6应助梦影采纳,获得10
6秒前
顾矜应助蜜桃奇迹采纳,获得10
6秒前
所所应助独特的采纳,获得10
6秒前
隐形曼青应助月眠眠采纳,获得10
6秒前
7秒前
7秒前
7秒前
荷小哈发布了新的文献求助10
8秒前
Maestro_S发布了新的文献求助10
8秒前
8秒前
2熊孩子2发布了新的文献求助10
8秒前
万能图书馆应助汤飞柏采纳,获得10
8秒前
8秒前
香蕉觅云应助xkkk采纳,获得30
9秒前
Li发布了新的文献求助10
9秒前
欣喜靖发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526219
求助须知:如何正确求助?哪些是违规求助? 4616313
关于积分的说明 14553183
捐赠科研通 4554594
什么是DOI,文献DOI怎么找? 2495952
邀请新用户注册赠送积分活动 1476311
关于科研通互助平台的介绍 1447978