Estimating associations between annual concentrations of particulate matter and mortality in the US, using data linkage and Bayesian Maximum Entropy

人口学 混淆 置信区间 死亡率 统计 医学 贝叶斯概率
作者
Jacqueline E Rudolph,Stephen R Cole,Jessie K Edwards,Eric A Whitsel,Marc L Serre,David B Richardson
出处
期刊:Epidemiology [Ovid Technologies (Wolters Kluwer)]
卷期号:Publish Ahead of Print
标识
DOI:10.1097/ede.0000000000001447
摘要

Exposure to fine particulate matter (PM2.5) is an established risk factor for human mortality. However, previous US studies have been limited to select cities or regions or to population subsets (e.g., older adults).Here, we demonstrate how to use the novel geostatistical method Bayesian maximum entropy to obtain estimates of PM2.5 concentrations in all contiguous US counties, 2000-2016. We then demonstrate how one could use these estimates in a traditional epidemiologic analysis examining the association between PM2.5 and rates of all-cause, cardiovascular, respiratory, and (as a negative control outcome) accidental mortality.We estimated that, for a 1 log(μg/m3) increase in PM2.5 concentration, the conditional all-cause mortality incidence rate ratio (IRR) was 1.029 (95% confidence interval [CI]: 1.006, 1.053). This implies that the rate of all-cause mortality at 10 µg/m3 would be 1.020 times the rate at 5 µg/m3. IRRs were larger for cardiovascular mortality than for all-cause mortality in all gender and race-ethnicity groups. We observed larger IRRs for all-cause, nonaccidental, and respiratory mortality in Black non-Hispanic Americans than White non-Hispanic Americans. However, our negative control analysis indicated the possibility for unmeasured confounding.We used a novel method that allowed us to estimate PM2.5 concentrations in all contiguous US counties and obtained estimates of the association between PM2.5 and mortality comparable to previous studies. Our analysis provides one example of how Bayesian maximum entropy could be used in epidemiologic analyses; future work could explore other ways to use this approach to inform important public health questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
hn发布了新的文献求助10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
沧海一粟完成签到,获得积分10
刚刚
刚刚
852应助科研通管家采纳,获得10
1秒前
Kittymiaoo发布了新的文献求助10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
无奈敏发布了新的文献求助10
1秒前
hejingyan应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
LLL应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
小张完成签到,获得积分10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
学术羊完成签到,获得积分10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得30
3秒前
许愿非树完成签到,获得积分10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
3秒前
白子双发布了新的文献求助10
3秒前
一一发布了新的文献求助10
4秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424904
求助须知:如何正确求助?哪些是违规求助? 4539183
关于积分的说明 14165914
捐赠科研通 4456291
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435170
关于科研通互助平台的介绍 1412492