Estimating associations between annual concentrations of particulate matter and mortality in the US, using data linkage and Bayesian Maximum Entropy

人口学 混淆 置信区间 死亡率 统计 医学 贝叶斯概率
作者
Jacqueline E Rudolph,Stephen R Cole,Jessie K Edwards,Eric A Whitsel,Marc L Serre,David B Richardson
出处
期刊:Epidemiology [Ovid Technologies (Wolters Kluwer)]
卷期号:Publish Ahead of Print
标识
DOI:10.1097/ede.0000000000001447
摘要

Exposure to fine particulate matter (PM2.5) is an established risk factor for human mortality. However, previous US studies have been limited to select cities or regions or to population subsets (e.g., older adults).Here, we demonstrate how to use the novel geostatistical method Bayesian maximum entropy to obtain estimates of PM2.5 concentrations in all contiguous US counties, 2000-2016. We then demonstrate how one could use these estimates in a traditional epidemiologic analysis examining the association between PM2.5 and rates of all-cause, cardiovascular, respiratory, and (as a negative control outcome) accidental mortality.We estimated that, for a 1 log(μg/m3) increase in PM2.5 concentration, the conditional all-cause mortality incidence rate ratio (IRR) was 1.029 (95% confidence interval [CI]: 1.006, 1.053). This implies that the rate of all-cause mortality at 10 µg/m3 would be 1.020 times the rate at 5 µg/m3. IRRs were larger for cardiovascular mortality than for all-cause mortality in all gender and race-ethnicity groups. We observed larger IRRs for all-cause, nonaccidental, and respiratory mortality in Black non-Hispanic Americans than White non-Hispanic Americans. However, our negative control analysis indicated the possibility for unmeasured confounding.We used a novel method that allowed us to estimate PM2.5 concentrations in all contiguous US counties and obtained estimates of the association between PM2.5 and mortality comparable to previous studies. Our analysis provides one example of how Bayesian maximum entropy could be used in epidemiologic analyses; future work could explore other ways to use this approach to inform important public health questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
体贴山河发布了新的文献求助10
1秒前
英姑应助科研通管家采纳,获得30
1秒前
雨馀云应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
2秒前
明明发布了新的文献求助10
2秒前
小团月完成签到 ,获得积分10
2秒前
Ninjagg完成签到,获得积分10
3秒前
科研通AI2S应助liuzengzhang666采纳,获得10
3秒前
3秒前
4秒前
6秒前
6秒前
7秒前
天天快乐应助hao采纳,获得10
8秒前
天天快乐应助mojomars采纳,获得10
9秒前
9秒前
10秒前
hitagi发布了新的文献求助10
10秒前
10秒前
英俊的筝完成签到,获得积分10
10秒前
hhhee完成签到 ,获得积分10
11秒前
熊亚丹发布了新的文献求助10
11秒前
科研通AI2S应助jessie采纳,获得10
11秒前
serein应助火星上的柚子采纳,获得10
12秒前
科研通AI2S应助liangao采纳,获得10
12秒前
12秒前
酷炫无敌完成签到,获得积分20
13秒前
yan完成签到,获得积分10
13秒前
爆米花应助xu采纳,获得10
13秒前
winter完成签到 ,获得积分20
13秒前
Ren发布了新的文献求助10
13秒前
霸气的初阳完成签到,获得积分10
14秒前
问天完成签到 ,获得积分10
14秒前
乐乐应助TTT采纳,获得10
14秒前
阎听筠完成签到 ,获得积分10
14秒前
splemeth完成签到,获得积分10
16秒前
Luckyz发布了新的文献求助10
16秒前
16秒前
Michelle米筛哦完成签到,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134744
求助须知:如何正确求助?哪些是违规求助? 2785657
关于积分的说明 7773533
捐赠科研通 2441441
什么是DOI,文献DOI怎么找? 1297924
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825