亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep learning approach to discover cyclin-dependent kinases 12 (CDK12) inhibitors in breast cancer.

乳腺癌 激酶 医学 酪氨酸激酶 癌症研究 细胞周期蛋白依赖激酶 药物发现 癌症 生物信息学 内科学 生物 受体 细胞周期 生物化学
作者
Tingyu Wen,Lixi Li,Yiqun Li,Jun Wang,Peng Gao,Guotong Xie,Fei Ma
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:40 (16_suppl): e15086-e15086
标识
DOI:10.1200/jco.2022.40.16_suppl.e15086
摘要

e15086 Background: Although anti-HER2 tyrosine kinase inhibitors (TKIs) have significantly prolonged survival and improved prognosis in HER2-positive breast cancer patients, resistance is a constant obstacle leading to TKIs treatment failure and tumor progression. Our previous research shows dual inhibition of HER2/CDK12 will prominently benefit the outcomes of patients with HER2-positive breast cancer by sensitizing the tumors to anti-HER2 TKIs treatment. Unfortunately, there is no high selective CDK12 inhibitor in clinical. This study sought to accelerate the CDK12 inhibitor discovery by a deep learning approach. Methods: We developed a large-scale self-supervised graph neural network to learn 11 million unlabelled compounds for molecular representation. And the model was trained with 233,823 kinase domain sequences by drug-target interaction datasets from the BindingDB database. Then, this transformer architecture was used to predict potential CDK12 inhibitors. The candidate hits compounds with diverse skeletons were divided into 50 clusters by clustering analysis. The representative hits with high transform scores and rational binding mode in each cluster were detected in the homogeneous time-resolved fluorescence CDK12 kinase assay. Candidate clusters with half-maximal inhibitory concentrations (IC50) lower than 200 nM were selected into expanded validation and kinase selective panel detection. xCELLigence RTCA system was adopted to monitor cell growth and sensitivity of breast cancer cells to CDK12 inhibitors in a real-time manner. Results: Our predictive transfer learning model yielded satisfactory predictions on various targets including CDK12. We screened a total of 4,527,236 compounds and recommended 50 clusters of potential CDK12 inhibitors for further enzyme activity detection. The IC50 of seven cluster representative compounds is lower than 10 uM. Expanded screening of 500 compounds in these clusters discovered a lot of hits with highly CDK12 selective inhibition. Half of the new compounds are showed promising proliferation inhibition in breast cancer cell lines. Conclusions: Our study provides a highly efficient and end-to-end deep learning approach to discover highly selective CDK12 inhibitors in breast cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
XP完成签到,获得积分20
1秒前
zhibaishouhei发布了新的文献求助10
5秒前
机灵的成协完成签到,获得积分10
8秒前
KoitoYuu发布了新的文献求助10
9秒前
阿嘉完成签到 ,获得积分10
10秒前
wykion完成签到,获得积分10
10秒前
15秒前
兴奋元冬发布了新的文献求助10
21秒前
zhibaishouhei完成签到,获得积分10
22秒前
寻道图强应助科研通管家采纳,获得30
23秒前
寻道图强应助科研通管家采纳,获得30
23秒前
寻道图强应助科研通管家采纳,获得30
23秒前
寻道图强应助科研通管家采纳,获得30
23秒前
英俊的铭应助乐观的如雪采纳,获得10
25秒前
40秒前
保持好心情完成签到 ,获得积分10
44秒前
微笑的铸海完成签到 ,获得积分10
56秒前
SciGPT应助研友_nEoEy8采纳,获得10
58秒前
潇潇完成签到 ,获得积分10
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
WEnyu发布了新的文献求助30
1分钟前
1分钟前
Yfufu发布了新的文献求助10
1分钟前
1分钟前
林非鹿完成签到 ,获得积分10
1分钟前
1分钟前
wuminhui发布了新的文献求助10
1分钟前
1分钟前
Yfufu完成签到,获得积分20
1分钟前
孙亦沈发布了新的文献求助10
1分钟前
兴奋元冬完成签到 ,获得积分10
1分钟前
孙亦沈完成签到,获得积分10
1分钟前
2分钟前
wuminhui完成签到,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244671
求助须知:如何正确求助?哪些是违规求助? 2888376
关于积分的说明 8252725
捐赠科研通 2556825
什么是DOI,文献DOI怎么找? 1385347
科研通“疑难数据库(出版商)”最低求助积分说明 650157
邀请新用户注册赠送积分活动 626234