Machine Learning in Diagnosing Middle Ear Disorders Using Tympanic Membrane Images: A Meta‐Analysis

医学 荟萃分析 协议(科学) 人工智能 内科学 病理 计算机科学 替代医学
作者
Zuwei Cao,Feifan Chen,Emad M. Grais,Fengjuan Yue,Yuexin Cai,De Wet Swanepoel,Fei Zhao
出处
期刊:Laryngoscope [Wiley]
卷期号:133 (4): 732-741 被引量:16
标识
DOI:10.1002/lary.30291
摘要

Objective To systematically evaluate the development of Machine Learning (ML) models and compare their diagnostic accuracy for the classification of Middle Ear Disorders (MED) using Tympanic Membrane (TM) images. Methods PubMed, EMBASE, CINAHL, and CENTRAL were searched up until November 30, 2021. Studies on the development of ML approaches for diagnosing MED using TM images were selected according to the inclusion criteria. PRISMA guidelines were followed with study design, analysis method, and outcomes extracted. Sensitivity, specificity, and area under the curve (AUC) were used to summarize the performance metrics of the meta‐analysis. Risk of Bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies‐2 tool in combination with the Prediction Model Risk of Bias Assessment Tool. Results Sixteen studies were included, encompassing 20254 TM images (7025 normal TM and 13229 MED). The sample size ranged from 45 to 6066 per study. The accuracy of the 25 included ML approaches ranged from 76.00% to 98.26%. Eleven studies (68.8%) were rated as having a low risk of bias, with the reference standard as the major domain of high risk of bias (37.5%). Sensitivity and specificity were 93% (95% CI, 90%–95%) and 85% (95% CI, 82%–88%), respectively. The AUC of total TM images was 94% (95% CI, 91%–96%). The greater AUC was found using otoendoscopic images than otoscopic images. Conclusions ML approaches perform robustly in distinguishing between normal ears and MED, however, it is proposed that a standardized TM image acquisition and annotation protocol should be developed. Level of Evidence NA Laryngoscope , 133:732–741, 2023
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Volume完成签到,获得积分10
刚刚
无情山水完成签到,获得积分20
刚刚
刚刚
吗喽完成签到,获得积分10
1秒前
1秒前
失眠双双完成签到,获得积分10
2秒前
烟花应助wml采纳,获得10
2秒前
3秒前
HC完成签到 ,获得积分10
3秒前
orixero应助Maxpan采纳,获得30
3秒前
拉长的绮梅完成签到,获得积分20
4秒前
兆锦momo发布了新的文献求助10
5秒前
5秒前
无敌小汐发布了新的文献求助10
6秒前
Volume发布了新的文献求助10
6秒前
12545完成签到,获得积分10
7秒前
blue发布了新的文献求助10
7秒前
怕孤独的访云完成签到 ,获得积分10
7秒前
阿狸贱贱发布了新的文献求助10
7秒前
穆子硕完成签到,获得积分10
7秒前
ljz完成签到,获得积分10
8秒前
8秒前
执念完成签到,获得积分10
8秒前
8秒前
9秒前
borisgugugugu发布了新的文献求助10
9秒前
陈强强完成签到,获得积分20
9秒前
Akim应助聪聪采纳,获得10
9秒前
sally完成签到,获得积分10
10秒前
10秒前
11秒前
12545发布了新的文献求助10
11秒前
11秒前
柠檬完成签到 ,获得积分10
11秒前
SIIO完成签到 ,获得积分10
12秒前
Dawn完成签到,获得积分10
12秒前
ciiil完成签到,获得积分10
12秒前
hhllhh发布了新的文献求助10
13秒前
13秒前
wyjistest完成签到,获得积分10
13秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257808
求助须知:如何正确求助?哪些是违规求助? 2899627
关于积分的说明 8306997
捐赠科研通 2568927
什么是DOI,文献DOI怎么找? 1395373
科研通“疑难数据库(出版商)”最低求助积分说明 653057
邀请新用户注册赠送积分活动 630868