A Report on Voice Recognition System: Techniques, Methodologies and Challenges using Deep Neural Network

计算机科学 人工神经网络 深度学习 说话人识别 人工智能 语音识别 特征提取 领域(数学) 生物识别 深层神经网络 互动性 特征(语言学) 身份(音乐) 机器学习 多媒体 语言学 哲学 物理 数学 声学 纯数学
作者
P. Deepa,Rashmita Khilar
标识
DOI:10.1109/i-pact52855.2021.9697005
摘要

Voice recognition has been advancing at a fast rate. Many cases involving edited audio clips and incorrect identity claims are reported on a daily basis. Due to the growing importance of information processing technology, it becomes easier and easier to identify people by their voices. Voice recognition consists of detecting a user's identity based on characteristics of their voice. It is a widely applied form of biometric recognition in the world, particularly in fields where security has a high priority. The deep neural networks were used as feature extractor alongside classifiers, but they haven't been completely trained due to the success of deep learning. While such methods are extremely efficient, they still require manual attention. Especially in DNN, interactivity between people and machines is essential. This is where the art of voice recognition comes from. In addition to their application in speech recognition, deep neural networks have demonstrated their potential to be used for voice recognition as well. They provide an efficient implementation of complex nonlinear models for learning unique and invariant data structures. The main contribution of this work is to provide a brief overview of the field of deep neural networks and voice recognition, describing its system, underlying approaches, and challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
棒棒糖完成签到 ,获得积分10
2秒前
烟花应助林盒采纳,获得10
4秒前
5秒前
故城完成签到 ,获得积分10
6秒前
6秒前
Owen应助健壮的如松采纳,获得10
7秒前
abbsdan发布了新的文献求助150
7秒前
511完成签到,获得积分10
8秒前
ZJFL完成签到,获得积分10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
8秒前
bkagyin应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
魔幻的盼秋完成签到 ,获得积分10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
KimTran应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得30
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得30
9秒前
9秒前
9秒前
Murphy应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
祖问筠完成签到,获得积分10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
洁净百川完成签到 ,获得积分10
9秒前
zx完成签到 ,获得积分10
10秒前
10秒前
10秒前
10秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162652
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900951
捐赠科研通 2473107
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175