Person Re-identification with Hierarchical Discriminative Spatial Aggregation

判别式 计算机科学 初始化 人工智能 联营 模式识别(心理学) 特征(语言学) 特征提取 计算机视觉
作者
Mingyang Zhang,Yang Xiao,Fu Xiong,Shuai Li,Zhiguo Cao,Zhiwen Fang,Joey Tianyi Zhou
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tifs.2022.3146773
摘要

Practically, person re-identification (re-ID) may suffer from the critical spatial misalignment problem due to inaccurate human detection, variation on human pose and camera viewpoint, etc. To address this, a hierarchical discriminative spatial aggregation method is proposed. The key idea is to conduct spatial aggregation on local human parts via global average-pooling to acquire the strong spatial misalignment tolerance, with VALD encoding on the local parts for facilitating discriminative power jointly. This proposition is built on NetVLAD to ensure end-to-end deep learning capacity. Due to the fine-grained property of person re-ID task that has not been well concerned by the original NetVLAD model for scene recognition, a feature refinement layer that consists of 1 fully-connected (FC) layer and 2 batch normalization (BN) layers is added on top of the raw NetVLAD layer to enhance the discriminative power and training convergence. And, a human body occlusion and background component dropout manner is also proposed to resist the effect of serious occlusion. Technically, a refined codeword initialization manner is proposed to alleviate the potential codeword imbalance problem caused by naive random initialization. The proposed discriminative spatial aggregation approach is then conducted on multi-resolution convolutional feature map layers hierarchically via early feature fusion, to involve richer semantic and fine-grained visual clues jointly. Wide-range experiments on 6 datasets (i.e., CUHK03, DukeMTMC-reID, Occluded-DukeMTMC, Market-1501, MSMT17 and Occluded-REID) verifies the effectiveness of our proposition. The source code and supporting material is available at https://github.com/zmyme/HDSA-reID .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ice完成签到 ,获得积分10
3秒前
able发布了新的文献求助10
5秒前
吴鹏完成签到,获得积分10
5秒前
6秒前
7秒前
随风飘远发布了新的文献求助10
8秒前
吴鹏发布了新的文献求助10
8秒前
jiaozhiping发布了新的文献求助10
9秒前
10秒前
小可爱发布了新的文献求助10
11秒前
科研半吊子ing完成签到,获得积分10
11秒前
宋十一发布了新的文献求助10
11秒前
冬猫完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
不配.应助成就幻枫采纳,获得10
13秒前
科研通AI2S应助swing采纳,获得10
14秒前
杨三多发布了新的文献求助10
16秒前
18秒前
xxxx发布了新的文献求助10
18秒前
19秒前
19秒前
啦啦啦啦完成签到,获得积分20
19秒前
木子李完成签到,获得积分10
19秒前
19秒前
青青子衿发布了新的文献求助10
20秒前
酷波er应助唐唐采纳,获得10
20秒前
随风飘远完成签到,获得积分10
22秒前
Owen应助舒适小熊猫采纳,获得10
23秒前
ding应助dichloro采纳,获得10
23秒前
23秒前
华仔应助眼睛大怀曼采纳,获得10
24秒前
安静曼彤完成签到,获得积分10
24秒前
XuX完成签到,获得积分10
25秒前
情怀应助迅哥采纳,获得10
26秒前
26秒前
27秒前
丘比特应助栗子鱼采纳,获得10
28秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138230
求助须知:如何正确求助?哪些是违规求助? 2789160
关于积分的说明 7790351
捐赠科研通 2445545
什么是DOI,文献DOI怎么找? 1300521
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046