Detection of the moldy status of the stored maize kernels using hyperspectral imaging and deep learning algorithms

高光谱成像 人工智能 支持向量机 模式识别(心理学) 数学 卷积神经网络 核(代数) 计算机科学 组合数学
作者
Dong Yang,Junyi Jiang,Yu Jie,Qianqian Li,Tianyu Shi
出处
期刊:International Journal of Food Properties [Informa]
卷期号:25 (1): 170-186 被引量:17
标识
DOI:10.1080/10942912.2022.2027963
摘要

It is significant to identify the moldy status of stored maize by fungi infection in the early stage. Hyperspectral imaging (HSI) combined with the sparse auto-encoders (SAE) and convolutional neural network (CNN) algorithms was used to classify the moldy grades of maize kernels. The HSI data were obtained in the range of 400–1000 nm, and four grades from health to heavy mildew were distinguished using the measured fungal spores of maize. The depth spectral features were represented using SAE and the image features were extracted by CNN. K nearest neighbors, support vector machine (SVM), and partial least squares discriminant analysis classifiers were combined with the spectral and image features to establish classification models to identify the different moldy grades of maize kernels. The comparison results indicated that the fusion of SAE and CNN combined with the SVM classifier to construct the SAE-CNN-SVM model had the most satisfactory identification result with high correct recognition rates of 99.47% and 98.94% for the training and testing sets, respectively, and the values of sensitivity and specificity were 0.95–1. The moldy grades were presented intuitively on the maize image based on pixels or kernel-wise. Therefore, the HSI with the SAE-CNN-SVM model had good recognition ability for the early detection of moldy maize kernels, which could potentially provide technical support for the development of online detection of moldy maize kernels during storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo完成签到,获得积分20
刚刚
LVincent发布了新的文献求助10
1秒前
yuyu发布了新的文献求助10
2秒前
露露发布了新的文献求助10
3秒前
活泼的飞扬完成签到,获得积分10
3秒前
xd发布了新的文献求助10
4秒前
4秒前
幽默千秋完成签到,获得积分10
5秒前
5秒前
a焦发布了新的文献求助10
5秒前
LIXI完成签到,获得积分20
6秒前
奋斗靖仇完成签到 ,获得积分10
7秒前
时光如梭发布了新的文献求助10
7秒前
8秒前
情怀应助发呆的剧本采纳,获得10
8秒前
建成完成签到,获得积分10
8秒前
科目三应助cqy采纳,获得10
9秒前
9秒前
10秒前
HonglinGao发布了新的文献求助10
10秒前
Miki发布了新的文献求助10
10秒前
酷酷的幼枫完成签到,获得积分10
11秒前
11秒前
12秒前
华仔应助xx采纳,获得10
14秒前
可爱的函函应助yuyu采纳,获得10
14秒前
充电宝应助鲜蘑采纳,获得10
14秒前
生气来找我完成签到,获得积分10
14秒前
15秒前
叶子发布了新的文献求助10
15秒前
时光如梭完成签到,获得积分10
16秒前
Kabutack完成签到,获得积分10
16秒前
无奈藏鸟完成签到,获得积分10
16秒前
Gu发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
KEcd完成签到 ,获得积分10
17秒前
大个应助酷酷的幼枫采纳,获得10
18秒前
Jasper应助wei_ahpu采纳,获得10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Plant–Pollinator Interactions: From Specialization to Generalization 400
Cai Yuanpei y la educación en la República de China (1912-1949) 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589567
求助须知:如何正确求助?哪些是违规求助? 3157831
关于积分的说明 9517603
捐赠科研通 2860886
什么是DOI,文献DOI怎么找? 1572095
邀请新用户注册赠送积分活动 737680
科研通“疑难数据库(出版商)”最低求助积分说明 722488