MDOAU-Net: A Lightweight and Robust Deep Learning Model for SAR Image Segmentation in Aquaculture Raft Monitoring

计算机科学 合成孔径雷达 人工智能 分割 偏移量(计算机科学) 图像分割 卷积(计算机科学) 计算机视觉 模式识别(心理学) 深度学习 遥感 人工神经网络 地质学 程序设计语言
作者
Jichao Wang,Jianchao Fan,Jun Wang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:18
标识
DOI:10.1109/lgrs.2022.3147355
摘要

Offshore aquaculture raft information extraction from synthetic aperture radar (SAR) images is essential for large-scale marine resource exploitation and protection. In this letter, a deep learning model called multi-scaled attention U-net with dilated convolution and offset convolution (MDOAU-net) is proposed for aquaculture raft monitoring via SAR image segmentation. The U-net backbone and attention gate of the Attention U-net are used in the MDOAU-net model. In addition, the MDOAU-net model consists of three distinctive parts. First, a multi-scale feature-fusion block is adopted in its input to extract features from raw images. Moreover, adapted from the Attention U-net for SAR image segmentation, fewer channels are used in each convolution layer of the MDOAU-net to match latent features in SAR images. Furthermore, nine dilated convolution blocks are adopted in the encoder–decoder structure to extract semantic features in the presence of speckle noises. In addition, offset convolution blocks are developed to convert spatial information into channel information for the precise segmentation of blurry boundaries. Four skip connections of the U-net backbone are replaced by four offset convolution blocks. Experimental results are elaborated to demonstrate the superior performance of the MDOAU-net model to seven existing methods in terms of overall accuracy (OA) and number of parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助科研通管家采纳,获得10
刚刚
brd应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得30
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
yar应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
坚定萤完成签到,获得积分10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
wuyuzegang应助科研通管家采纳,获得20
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
lemonli完成签到,获得积分20
3秒前
3秒前
20231125完成签到,获得积分10
3秒前
3秒前
CipherSage应助DDKK采纳,获得10
3秒前
AronHUANG发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助拼搏迎梦采纳,获得20
4秒前
爆米花应助缥缈的闭月采纳,获得30
4秒前
南极野人完成签到,获得积分10
5秒前
活泼一凤发布了新的文献求助10
5秒前
苹果沛柔完成签到,获得积分10
5秒前
6秒前
所所应助鱼2333采纳,获得10
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620