亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MDOAU-Net: A Lightweight and Robust Deep Learning Model for SAR Image Segmentation in Aquaculture Raft Monitoring

计算机科学 合成孔径雷达 人工智能 分割 偏移量(计算机科学) 图像分割 卷积(计算机科学) 计算机视觉 模式识别(心理学) 深度学习 遥感 人工神经网络 地质学 程序设计语言
作者
Jichao Wang,Jianchao Fan,Jun Wang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:18
标识
DOI:10.1109/lgrs.2022.3147355
摘要

Offshore aquaculture raft information extraction from synthetic aperture radar (SAR) images is essential for large-scale marine resource exploitation and protection. In this letter, a deep learning model called multi-scaled attention U-net with dilated convolution and offset convolution (MDOAU-net) is proposed for aquaculture raft monitoring via SAR image segmentation. The U-net backbone and attention gate of the Attention U-net are used in the MDOAU-net model. In addition, the MDOAU-net model consists of three distinctive parts. First, a multi-scale feature-fusion block is adopted in its input to extract features from raw images. Moreover, adapted from the Attention U-net for SAR image segmentation, fewer channels are used in each convolution layer of the MDOAU-net to match latent features in SAR images. Furthermore, nine dilated convolution blocks are adopted in the encoder–decoder structure to extract semantic features in the presence of speckle noises. In addition, offset convolution blocks are developed to convert spatial information into channel information for the precise segmentation of blurry boundaries. Four skip connections of the U-net backbone are replaced by four offset convolution blocks. Experimental results are elaborated to demonstrate the superior performance of the MDOAU-net model to seven existing methods in terms of overall accuracy (OA) and number of parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AurorY发布了新的文献求助10
8秒前
9秒前
qiuer7应助科研通管家采纳,获得10
9秒前
Folivo完成签到,获得积分10
21秒前
22秒前
扣子完成签到,获得积分10
27秒前
Pengzhuhuai发布了新的文献求助10
28秒前
32秒前
Pengzhuhuai完成签到,获得积分10
33秒前
过氧化氢发布了新的文献求助10
37秒前
44秒前
48秒前
49秒前
51秒前
Cola发布了新的文献求助10
55秒前
希望天下0贩的0应助欣欣采纳,获得10
56秒前
遇上就这样吧应助ruby采纳,获得30
57秒前
矢思然完成签到,获得积分10
1分钟前
Cola完成签到,获得积分20
1分钟前
1分钟前
欣欣发布了新的文献求助10
1分钟前
1分钟前
111发布了新的文献求助10
1分钟前
1分钟前
110o发布了新的文献求助10
1分钟前
2分钟前
qiuer7应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
llll完成签到 ,获得积分0
2分钟前
阳阿儿发布了新的文献求助30
2分钟前
隐形曼青应助believe采纳,获得10
2分钟前
2分钟前
believe发布了新的文献求助10
2分钟前
believe完成签到,获得积分10
2分钟前
Criminology34举报568923求助涉嫌违规
2分钟前
3分钟前
TXZ06发布了新的文献求助10
3分钟前
cjh驳回了Owen应助
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422553
求助须知:如何正确求助?哪些是违规求助? 4537467
关于积分的说明 14157445
捐赠科研通 4454064
什么是DOI,文献DOI怎么找? 2443173
邀请新用户注册赠送积分活动 1434482
关于科研通互助平台的介绍 1411627