Machine learning‐based modeling in food processing applications: State of the art

计算机科学 食品加工 过程(计算) 能源消耗 食品工业 食品质量 人工智能 机器学习 工艺工程 工程类 政治学 食品科学 操作系统 电气工程 化学 法学
作者
Md. Imran H. Khan,Shyam S. Sablani,Richi Nayak,Yuantong Gu
出处
期刊:Comprehensive Reviews in Food Science and Food Safety [Wiley]
卷期号:21 (2): 1409-1438 被引量:63
标识
DOI:10.1111/1541-4337.12912
摘要

Abstract Food processing is a complex, multifaceted problem that requires substantial human interaction to optimize the various process parameters to minimize energy consumption and ensure better‐quality products. The development of a machine learning (ML)‐based approach to food processing applications is an exciting and innovative idea for optimizing process parameters and process kinetics to reduce energy consumption, processing time, and ensure better‐quality products; however, developing such a novel approach requires significant scientific effort. This paper presents and evaluates ML‐based approaches to various food processing operations such as drying, frying, baking, canning, extrusion, encapsulation, and fermentation to predict process kinetics. A step‐by‐step procedure to develop an ML‐based model and its practical implementation is presented. The key challenges of neural network training and testing algorithms and their limitations are discussed to assist readers in selecting algorithms for solving problems specific to food processing. In addition, this paper presents the potential and challenges of applying ML‐based techniques to hybrid food processing operations. The potential of physics‐informed ML modeling techniques for food processing applications and their strategies is also discussed. It is expected that the potential information of this paper will be valuable in advancing the ML‐based technology for food processing applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲山彤发布了新的文献求助10
1秒前
SciGPT应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
叫我魔王大人关注了科研通微信公众号
2秒前
orixero应助科研通管家采纳,获得30
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
实验好难应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
kingwill应助科研通管家采纳,获得20
2秒前
实验好难应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
我是老大应助甜橙采纳,获得10
2秒前
2以李完成签到,获得积分10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
3秒前
Ava应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得50
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
疯狂的乌发布了新的文献求助10
4秒前
浮华应助找找采纳,获得10
5秒前
77发布了新的文献求助10
6秒前
科研通AI5应助zain采纳,获得10
6秒前
yao完成签到,获得积分10
7秒前
8秒前
ding应助景色采纳,获得10
8秒前
8秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737910
求助须知:如何正确求助?哪些是违规求助? 3281470
关于积分的说明 10025533
捐赠科研通 2998170
什么是DOI,文献DOI怎么找? 1645135
邀请新用户注册赠送积分活动 782612
科研通“疑难数据库(出版商)”最低求助积分说明 749843