发光体
电化学发光
化学
氧化剂
无机化学
分析化学(期刊)
物理化学
发光
光电子学
电极
色谱法
有机化学
物理
作者
Li Fu,Xuwen Gao,Shuangtian Dong,Jingna Jia,Yuqi Xu,Dongyang Wang,Guizheng Zou
标识
DOI:10.1021/acs.analchem.1c04612
摘要
Electrochemiluminescence (ECL) is conventionally generated in either an annihilation or a coreactant route, and the overwhelming majority of ECL research is conducted in the coreactant route via oxidizing or reducing the coexisting coreactant and luminophore. The coreacant-free ECL generated via merely oxidizing the luminophore would break through the ceiling of coreactant ECL via excluding the detrimental effects of exogenous coreactant and dissolved oxygen. Herein, by exploiting the rich-electron nature of n-type nanocrystals (NCs), coreacant-free ECL is achieved via merely oxidizing 3-mercaptopropionic acid (MPA) and mercaptosuccinic acid (MSA) capped InP/ZnS NCs, i.e., InP/ZnSMPA-MSA. The electron-rich InP/ZnSMPA-MSA can be electrochemically injected with holes via two oxidative processes at around +0.75 and +1.37 V (vs Ag/AgCl), respectively, and the exogenous hole can directly combine the conduction band (CB) electron of InP/ZnSMPA-MSA, resulting in two coreactant-free ECL processes without employing any exogenous coreactant. The deprotonation process for the carboxyl group of the capping agents can provide a negatively charged surface to InP/ZnSMPA-MSA and enhance the coreactant-free ECL. The hole-injecting process at +1.37 is much stronger than that at +0.75 V and eventually enables an ∼2000-fold enhanced ECL at +1.37 V than that at +0.75 V. The ECL at +1.37 V can be utilized for coreactant-free ECL immunoassay with prostate-specific antigen (PSA) as analyte, which exhibits an acceptable linear response from 5 pg·mL-1 to 1 ng·mL-1 with a limit of detection of 0.3 pg·mL-1. The coreactant-free ECL route would provide an alternative to both annihilation and coreactant routes, simplify the ECL assay procedure and deepening the ECL mechanism investigations.
科研通智能强力驱动
Strongly Powered by AbleSci AI