对苯二甲酸
材料科学
金属有机骨架
吸附
电子转移
密度泛函理论
极性效应
取代基
焓
乙烯
路易斯酸
物理化学
无机化学
选择性
金属
化学
有机化学
计算化学
催化作用
复合材料
冶金
量子力学
聚酯纤维
物理
作者
Feifei Zhang,Hua Shang,Li Wang,Lei Ma,Kunjie Li,Yingying Zhang,Jiangfeng Yang,Libo Li,Jinping Li
标识
DOI:10.1021/acsami.1c22866
摘要
N2 removal is of great significance in high-purity O2 production and natural gas purification. Here, we present a substituent-induced electron-transfer strategy for improving N2 capture performance by controlling the Lewis acidity of Cr(III) metal unsaturated sites in Cr-based metal-organic frameworks. With the enhancement of the electron-withdrawing ability of the modified group on terephthalic acid (-NO2 > -CH3), the N2 adsorption ability of MIL-101(Cr)-X was improved significantly. For MIL-101(Cr)-NO2, the adsorption enthalpy of N2 at zero coverage was 30.01 kJ/mol, which was much larger than that of MIL-101(Cr)-CH3 (14.31 kJ/mol). In situ infrared spectroscopy studies, Bader charges, and density functional theory calculations showed that the presence of -NO2 could enhance the Lewis acidity of Cr(III) metal unsaturated sites, which resulted in a strong interaction affinity for N2. The adsorption isotherms indicated that MIL-101(Cr)-NO2 had an excellent N2/O2 (79/21, v/v) selectivity of up to 10.8 and a good N2/CH4 separation performance (SN2/CH4 = 2.8, 298 K, 1 bar). Breakthrough curves showed that MIL-101(Cr)-NO2 had great potential for the efficient separation of N2/O2 and N2/CH4.
科研通智能强力驱动
Strongly Powered by AbleSci AI