Multisensor Fusion and Explicit Semantic Preserving-Based Deep Hashing for Cross-Modal Remote Sensing Image Retrieval

计算机科学 汉明空间 散列函数 人工智能 图像检索 卷积神经网络 深度学习 模式识别(心理学) 图像(数学) 汉明码 算法 解码方法 计算机安全 区块代码
作者
Yuxi Sun,Shanshan Feng,Yunming Ye,Xutao Li,Jian Kang,Zhichao Huang,Chuyao Luo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:12
标识
DOI:10.1109/tgrs.2021.3136641
摘要

Cross-modal hashing is an important tool for retrieving useful information from very-high-resolution (VHR) optical images and synthetic aperture radar (SAR) images. Dealing with the intermodal discrepancies, including both spatial–spectral and visual semantic aspects, between VHR and SAR images is extremely vital to generate high-quality common hash codes in the Hamming space. However, existing cross-modal hashing methods ignore the spatial–spectral discrepancy when representing VHR and SAR images. Moreover, existing methods employ derived supervised signals, such as pairwise training images, to implicitly guide hashing learning, which fails to effectively deal with the visual semantic discrepancy, i.e., cannot adequately preserve the intraclass similarity and interclass discrimination between VHR and SAR images. To address these drawbacks, this article proposes a multisensor fusion and explicit semantic preserving-based deep Hashing method, termed as MsEspH, which can effectively deal with the discrepancies. Specifically, we design a novel cross-modal hashing network to eliminate the spatial–spectral discrepancies by fusing extra multispectral images (MSIs), which are generated in real time by a generative adversarial network. Then, we propose an explicit semantic preserving-based objective function by analyzing the connection between classification and hash learning. The objective function can preserve the intraclass similarity and interclass discrimination with class labels directly. Moreover, we theoretically verify that hash learning and classification can be unified into a learning framework under certain conditions. To evaluate our method, we construct and release a large-scale VHR-SAR image dataset. Extensive experiments on the dataset demonstrate that our method outperforms various state-of-the-art cross-modal hashing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
liumou发布了新的文献求助10
2秒前
聪慧萃发布了新的文献求助10
6秒前
sunny完成签到 ,获得积分10
7秒前
8秒前
所所应助AJY采纳,获得10
11秒前
lumos完成签到,获得积分10
12秒前
12秒前
13秒前
liumou完成签到,获得积分10
13秒前
小蘑菇应助怕黑嘉熙采纳,获得10
15秒前
喜悦的月光完成签到,获得积分10
16秒前
小蘑菇应助意外的月饼采纳,获得10
16秒前
聪慧萃完成签到,获得积分20
17秒前
孙文远发布了新的文献求助10
17秒前
李健应助安静的忆梅采纳,获得10
17秒前
852应助xuex1采纳,获得10
18秒前
18秒前
21秒前
22秒前
NexusExplorer应助无算浮白采纳,获得10
23秒前
和光同尘完成签到,获得积分10
23秒前
共享精神应助科研通管家采纳,获得10
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
23秒前
Jasper应助科研通管家采纳,获得20
23秒前
桐桐应助科研通管家采纳,获得10
24秒前
orixero应助科研通管家采纳,获得10
24秒前
zhu97应助科研通管家采纳,获得20
24秒前
云瑾应助科研通管家采纳,获得10
24秒前
遥远的尧应助科研通管家采纳,获得10
24秒前
思源应助科研通管家采纳,获得10
24秒前
今后应助科研通管家采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
遥远的尧应助科研通管家采纳,获得10
24秒前
24秒前
走四方应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
24秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164337
求助须知:如何正确求助?哪些是违规求助? 2815185
关于积分的说明 7907938
捐赠科研通 2474745
什么是DOI,文献DOI怎么找? 1317642
科研通“疑难数据库(出版商)”最低求助积分说明 631915
版权声明 602234