Multisensor Fusion and Explicit Semantic Preserving-Based Deep Hashing for Cross-Modal Remote Sensing Image Retrieval

计算机科学 汉明空间 散列函数 人工智能 图像检索 卷积神经网络 深度学习 模式识别(心理学) 图像(数学) 汉明码 算法 解码方法 计算机安全 区块代码
作者
Yuxi Sun,Shanshan Feng,Yunming Ye,Xutao Li,Jian Kang,Zhichao Huang,Chuyao Luo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:21
标识
DOI:10.1109/tgrs.2021.3136641
摘要

Cross-modal hashing is an important tool for retrieving useful information from very-high-resolution (VHR) optical images and synthetic aperture radar (SAR) images. Dealing with the intermodal discrepancies, including both spatial–spectral and visual semantic aspects, between VHR and SAR images is extremely vital to generate high-quality common hash codes in the Hamming space. However, existing cross-modal hashing methods ignore the spatial–spectral discrepancy when representing VHR and SAR images. Moreover, existing methods employ derived supervised signals, such as pairwise training images, to implicitly guide hashing learning, which fails to effectively deal with the visual semantic discrepancy, i.e., cannot adequately preserve the intraclass similarity and interclass discrimination between VHR and SAR images. To address these drawbacks, this article proposes a multisensor fusion and explicit semantic preserving-based deep Hashing method, termed as MsEspH, which can effectively deal with the discrepancies. Specifically, we design a novel cross-modal hashing network to eliminate the spatial–spectral discrepancies by fusing extra multispectral images (MSIs), which are generated in real time by a generative adversarial network. Then, we propose an explicit semantic preserving-based objective function by analyzing the connection between classification and hash learning. The objective function can preserve the intraclass similarity and interclass discrimination with class labels directly. Moreover, we theoretically verify that hash learning and classification can be unified into a learning framework under certain conditions. To evaluate our method, we construct and release a large-scale VHR-SAR image dataset. Extensive experiments on the dataset demonstrate that our method outperforms various state-of-the-art cross-modal hashing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浮游应助科研狗采纳,获得10
1秒前
欢喜依波完成签到,获得积分10
1秒前
虚心的阿松完成签到,获得积分10
1秒前
浮游应助艳子采纳,获得10
2秒前
杰杰大叔发布了新的文献求助50
2秒前
jiaozitop发布了新的文献求助10
3秒前
含蓄的敏发布了新的文献求助10
3秒前
5秒前
丘比特应助媛媛一定发sci采纳,获得10
7秒前
Moongazer完成签到,获得积分10
7秒前
CipherSage应助络巫琥采纳,获得10
8秒前
9秒前
9秒前
10秒前
12秒前
唐雨文发布了新的文献求助10
13秒前
15秒前
16秒前
清浼发布了新的文献求助10
16秒前
哈哈哈发布了新的文献求助10
17秒前
酷波er应助沉默的可乐采纳,获得10
17秒前
18秒前
18秒前
左丘映易完成签到,获得积分0
18秒前
浮游应助ypj9777采纳,获得10
18秒前
19秒前
坚强志泽完成签到 ,获得积分10
20秒前
21秒前
小明应助西海小甜豆采纳,获得10
21秒前
完美世界应助junfeiwang采纳,获得10
21秒前
璆璆的虾完成签到 ,获得积分10
21秒前
在水一方应助xiaoxue采纳,获得10
22秒前
虞美人发布了新的文献求助10
22秒前
汉堡包应助加减乘除采纳,获得10
22秒前
guagua完成签到 ,获得积分10
23秒前
24秒前
24秒前
liangzhong发布了新的文献求助10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300309
求助须知:如何正确求助?哪些是违规求助? 4448241
关于积分的说明 13845431
捐赠科研通 4333898
什么是DOI,文献DOI怎么找? 2379231
邀请新用户注册赠送积分活动 1374395
关于科研通互助平台的介绍 1340037