Multisensor Fusion and Explicit Semantic Preserving-Based Deep Hashing for Cross-Modal Remote Sensing Image Retrieval

计算机科学 汉明空间 散列函数 人工智能 图像检索 卷积神经网络 深度学习 模式识别(心理学) 图像(数学) 汉明码 算法 解码方法 计算机安全 区块代码
作者
Yuxi Sun,Shanshan Feng,Yunming Ye,Xutao Li,Jian Kang,Zhichao Huang,Chuyao Luo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:12
标识
DOI:10.1109/tgrs.2021.3136641
摘要

Cross-modal hashing is an important tool for retrieving useful information from very-high-resolution (VHR) optical images and synthetic aperture radar (SAR) images. Dealing with the intermodal discrepancies, including both spatial–spectral and visual semantic aspects, between VHR and SAR images is extremely vital to generate high-quality common hash codes in the Hamming space. However, existing cross-modal hashing methods ignore the spatial–spectral discrepancy when representing VHR and SAR images. Moreover, existing methods employ derived supervised signals, such as pairwise training images, to implicitly guide hashing learning, which fails to effectively deal with the visual semantic discrepancy, i.e., cannot adequately preserve the intraclass similarity and interclass discrimination between VHR and SAR images. To address these drawbacks, this article proposes a multisensor fusion and explicit semantic preserving-based deep Hashing method, termed as MsEspH, which can effectively deal with the discrepancies. Specifically, we design a novel cross-modal hashing network to eliminate the spatial–spectral discrepancies by fusing extra multispectral images (MSIs), which are generated in real time by a generative adversarial network. Then, we propose an explicit semantic preserving-based objective function by analyzing the connection between classification and hash learning. The objective function can preserve the intraclass similarity and interclass discrimination with class labels directly. Moreover, we theoretically verify that hash learning and classification can be unified into a learning framework under certain conditions. To evaluate our method, we construct and release a large-scale VHR-SAR image dataset. Extensive experiments on the dataset demonstrate that our method outperforms various state-of-the-art cross-modal hashing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
caicai发布了新的文献求助10
1秒前
无情的菲鹰完成签到,获得积分10
1秒前
兔兔完成签到 ,获得积分10
1秒前
打打应助勤奋的蜗牛采纳,获得10
1秒前
2秒前
jery完成签到,获得积分10
2秒前
乐乐应助润润轩轩采纳,获得10
3秒前
指哪打哪完成签到,获得积分10
3秒前
弄井发布了新的文献求助30
4秒前
4秒前
4秒前
4秒前
4秒前
Wing完成签到 ,获得积分10
5秒前
R先生发布了新的文献求助10
5秒前
科研小白发布了新的文献求助10
5秒前
年三月完成签到 ,获得积分10
6秒前
lb完成签到,获得积分20
6秒前
6秒前
香蕉觅云应助叶飞荷采纳,获得10
7秒前
flow发布了新的文献求助10
8秒前
穆仰应助li采纳,获得10
8秒前
班尼肥鸭完成签到 ,获得积分10
8秒前
噔噔噔噔发布了新的文献求助10
8秒前
bkagyin应助ffff采纳,获得10
8秒前
000完成签到,获得积分10
8秒前
8秒前
Anxinxin发布了新的文献求助20
9秒前
9秒前
Ych完成签到,获得积分20
10秒前
lai发布了新的文献求助10
10秒前
彭彭发布了新的文献求助10
10秒前
ggb完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
迅速宛筠完成签到,获得积分10
11秒前
弄井完成签到,获得积分10
12秒前
充电宝应助无悔呀采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762