Multisensor Fusion and Explicit Semantic Preserving-Based Deep Hashing for Cross-Modal Remote Sensing Image Retrieval

计算机科学 汉明空间 散列函数 人工智能 图像检索 卷积神经网络 深度学习 模式识别(心理学) 图像(数学) 汉明码 算法 解码方法 计算机安全 区块代码
作者
Yuxi Sun,Shanshan Feng,Yunming Ye,Xutao Li,Jian Kang,Zhichao Huang,Chuyao Luo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:12
标识
DOI:10.1109/tgrs.2021.3136641
摘要

Cross-modal hashing is an important tool for retrieving useful information from very-high-resolution (VHR) optical images and synthetic aperture radar (SAR) images. Dealing with the intermodal discrepancies, including both spatial–spectral and visual semantic aspects, between VHR and SAR images is extremely vital to generate high-quality common hash codes in the Hamming space. However, existing cross-modal hashing methods ignore the spatial–spectral discrepancy when representing VHR and SAR images. Moreover, existing methods employ derived supervised signals, such as pairwise training images, to implicitly guide hashing learning, which fails to effectively deal with the visual semantic discrepancy, i.e., cannot adequately preserve the intraclass similarity and interclass discrimination between VHR and SAR images. To address these drawbacks, this article proposes a multisensor fusion and explicit semantic preserving-based deep Hashing method, termed as MsEspH, which can effectively deal with the discrepancies. Specifically, we design a novel cross-modal hashing network to eliminate the spatial–spectral discrepancies by fusing extra multispectral images (MSIs), which are generated in real time by a generative adversarial network. Then, we propose an explicit semantic preserving-based objective function by analyzing the connection between classification and hash learning. The objective function can preserve the intraclass similarity and interclass discrimination with class labels directly. Moreover, we theoretically verify that hash learning and classification can be unified into a learning framework under certain conditions. To evaluate our method, we construct and release a large-scale VHR-SAR image dataset. Extensive experiments on the dataset demonstrate that our method outperforms various state-of-the-art cross-modal hashing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiangxiaoyu完成签到 ,获得积分10
刚刚
yzm完成签到,获得积分20
1秒前
biomichael完成签到,获得积分10
1秒前
樊珩发布了新的文献求助10
1秒前
Yolo发布了新的文献求助10
1秒前
1秒前
小pppp发布了新的文献求助20
1秒前
1秒前
1秒前
2秒前
3秒前
郝郝完成签到,获得积分10
3秒前
3秒前
WW发布了新的文献求助10
4秒前
Ke完成签到,获得积分10
4秒前
4秒前
渝州人完成签到,获得积分10
4秒前
kirito发布了新的文献求助10
5秒前
厄页石页完成签到,获得积分10
6秒前
正常发布了新的文献求助10
6秒前
英俊的胜完成签到,获得积分10
7秒前
7秒前
柚子完成签到 ,获得积分10
8秒前
杨雪妮发布了新的文献求助10
8秒前
嗒嗒完成签到,获得积分10
8秒前
幸福时光完成签到,获得积分10
8秒前
iNk应助小底采纳,获得10
8秒前
SciGPT应助一个刚刚采纳,获得10
10秒前
yuanquaner发布了新的文献求助10
10秒前
可爱的函函应助biomichael采纳,获得10
11秒前
清爽的诗槐完成签到,获得积分10
11秒前
ljxx发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
14秒前
xinxinqi完成签到 ,获得积分10
14秒前
青石完成签到,获得积分20
15秒前
背后的雨竹完成签到,获得积分10
15秒前
那地方完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950291
求助须知:如何正确求助?哪些是违规求助? 3495773
关于积分的说明 11078786
捐赠科研通 3226217
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800904