内质网
氧化还原
天然产物
鉴定(生物学)
化学
生物化学
生物
有机化学
植物
作者
Brennan D. Johnson,Sridhar Reddy Kaulagari,Wei-Chih Chen,Kevin Hayes,Werner J. Geldenhuys,Lori A. Hazlehurst
标识
DOI:10.1021/acsbiomedchemau.1c00062
摘要
The flavin adenine dinucleotide containing Endoplasmic Reticulum Oxidoreductase-1 α (ERO1α) catalyzes the formation of de novo disulfide bond formation of secretory and transmembrane proteins and contributes towards proper protein folding. Recently, increased ERO1α expression has been shown to contribute to increased tumor growth and metastasis in multiple cancer types. In this report we sought to define novel chemical space for targeting ERO1α function. Using the previously reported ERO1α inhibitor compound, EN-460, as a benchmark pharmacological tool we were able to identify a sulfuretin derivative, T151742 which was approximately two-fold more potent using a recombinant enzyme assay system (IC50 = 8.27 ± 2.33 μM) compared to EN-460 (IC50= 16.46 ± 3.47 μM). Additionally, T151742 (IC50 = 16.04 μM) was slightly more sensitive than EN-460 (IC50= 19.35μM) using an MTT assay as an endpoint. Utilizing a cellular thermal shift assay (CETSA), we determined that the sulfuretin derivative T151742 demonstrated isozyme specificity for ERO1α as compared to ERO1β and showed no detectable binding to the FAD containing enzyme LSD-1. T151742 retained activity in PC-9 cells in a clonogenicity assay while EN-460 was devoid of activity. Furthermore, the activity of T151742 inhibition of clonogenicity was dependent on ERO1α expression as CRISPR edited PC-9 cells were resistant to treatment with T151742. In summary we identified a new scaffold that shows specificity for ERO1α compared to the closely related paralog ERO1β or the FAD containing enzyme LSD-1 that can be used as a tool compound for inhibition of ERO1α to allow for pharmacological validation of the role of ERO1α in cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI