Alkaline exchange membrane fuel cells are impeded by the lack of cost-effective, highly efficient catalysts for the sluggish hydrogen oxidation reaction (HOR). Herein, single-atomic Pd sites supported by ordered porous N,S-doped carbon are synthesized, exhibiting remarkable alkaline HOR performance. This catalyst exhibits an ultrahigh anodic current density and mass-specific kinetic current of 2.01 mA cm–2 and 27,719 A gPd–1 (at an overpotential of 50 mV), respectively, not only outperforming the Pt/C counterpart but also making it among the best reported HOR catalysts. Furthermore, this catalyst exhibits a negligible activity decay during long-term electrolysis and a good CO tolerance capability. Experiments and theoretical calculations indicate that the synergistic effect from single Pd sites and heteroatom doping (N and S) weakens the binding energy of Had intermediates, thereby accounting for its superior HOR activity. This study provides a guideline for developing single-atomic site catalysts for highly efficient, stable alkaline HOR.