已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reinforcement Learning Methods in Public Health

强化学习 计算机科学 资源配置 风险分析(工程) 转化式学习 公共卫生 管理科学 运筹学 人工智能 医学 经济 工程类 心理学 教育学 计算机网络 护理部
作者
Justin Weltz,Alexander Volfovsky,Eric B. Laber
出处
期刊:Clinical Therapeutics [Elsevier]
卷期号:44 (1): 139-154 被引量:15
标识
DOI:10.1016/j.clinthera.2021.11.002
摘要

Purpose Reinforcement learning (RL) is the subfield of machine learning focused on optimal sequential decision making under uncertainty. An optimal RL strategy maximizes cumulative utility by experimenting only if and when the information generated by experimentation is likely to outweigh associated short-term costs. RL represents a holistic approach to decision making that evaluates the impact of every action (ie, data collection, allocation of resources, and treatment assignment) in terms of short-term and long-term utility to stakeholders. Thus, RL is an ideal model for a number of complex decision problems that arise in public health, including resource allocation in a pandemic, monitoring or testing, and adaptive sampling for hidden populations. Nevertheless, although RL has been applied successfully in a wide range of domains, including precision medicine, it has not been widely adopted in public health. The purposes of this review are to introduce key ideas in RL and to identify challenges and opportunities associated with the application of RL in public health. Methods We provide a nontechnical review of the theoretical and methodologic underpinnings of RL. A running example of RL for the management of an infectious disease is used to illustrate ideas. Findings RL has the potential to make a transformative impact in a range of sequential decision problems in public health. By allocating resources if, when, and where they are most impactful, RL can improve health outcomes while reducing resource consumption. Implications Public health researchers and stakeholders should consider RL as a means of efficiently using data to inform optimal evidence-based decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cuipanda完成签到,获得积分10
刚刚
刚刚
Sunshine完成签到 ,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
4秒前
VDC应助东方欲晓采纳,获得30
5秒前
圈圈发布了新的文献求助10
5秒前
Ava应助Singularity采纳,获得10
7秒前
科研通AI2S应助栗子采纳,获得10
8秒前
轩辕寄风应助唐盼烟采纳,获得20
9秒前
Lucas应助来了采纳,获得10
9秒前
俞若枫发布了新的文献求助10
10秒前
13秒前
Steplan完成签到,获得积分10
18秒前
19秒前
淳于文昊发布了新的文献求助10
21秒前
22秒前
LSD发布了新的文献求助10
23秒前
24秒前
Guo21发布了新的文献求助10
27秒前
仁爱青文完成签到 ,获得积分10
28秒前
唐盼烟完成签到,获得积分20
30秒前
彪壮的寒安完成签到,获得积分10
34秒前
34秒前
852应助如初采纳,获得10
36秒前
生物科研小白完成签到 ,获得积分10
37秒前
ding应助东方欲晓采纳,获得10
39秒前
俞若枫发布了新的文献求助30
43秒前
沉静元瑶发布了新的文献求助20
44秒前
科研通AI2S应助求求接收吧采纳,获得10
44秒前
湘玉给你溜肥肠完成签到,获得积分10
47秒前
饭团不吃鱼完成签到,获得积分10
49秒前
49秒前
充电宝应助Rjy采纳,获得10
50秒前
53秒前
疯狂的沛岚完成签到,获得积分10
53秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207538
求助须知:如何正确求助?哪些是违规求助? 2856919
关于积分的说明 8107713
捐赠科研通 2522443
什么是DOI,文献DOI怎么找? 1355610
科研通“疑难数据库(出版商)”最低求助积分说明 642234
邀请新用户注册赠送积分活动 613522