DiZyme: Open‐Access Expandable Resource for Quantitative Prediction of Nanozyme Catalytic Activity

计算机科学 资源(消歧) 催化作用 材料科学 化学 有机化学 计算机网络
作者
Julia Razlivina,Nikita Serov,Olga E. Shapovalova,Vladimir V. Vinogradov
出处
期刊:Small [Wiley]
卷期号:18 (12) 被引量:39
标识
DOI:10.1002/smll.202105673
摘要

Enzymes suffer from high cost, complex purification, and low stability. Development of low-cost artificial enzymes of comparative or higher effectiveness is desired. Given its complexity, it is desired to presume their activities prior to experiments. While computational approaches demonstrate success in modeling nanozyme activities, they require assumptions about the system to be made. Machine learning (ML) is an alternative approach towards data-driven material property prediction achieving high performance even on multicomponent complex systems. Despite the growing demand for customized nanozymes, there is no open access nanozyme database. Here, a user-friendly expandable database of >300 existing inorganic nanozymes is developed by data collection from >100 articles. Data analysis is performed to reveal the features responsible for catalytic activities of nanozymes, and new descriptors are proposed for its ML-assisted prediction. A random forest regression (RFR) model for evaluation of nanozyme peroxidase activity is developed and optimized by correlation-based feature selection and hyperparameter tuning, achieving performance up to R2 = 0.796 for Kcat and R2 = 0.627 for Km . Experiment-confirmed unknown nanozyme activity prediction is also demonstrated. Moreover, the DiZyme expandable, open-access resource containing the database, predictive algorithm, and visualization tool is developed to boost novel nanozyme discovery worldwide (https://dizyme.net).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助yinhe采纳,获得10
1秒前
chenyou完成签到,获得积分10
1秒前
1秒前
危机的沛山完成签到,获得积分10
3秒前
3秒前
再学一分钟完成签到,获得积分10
3秒前
4秒前
居崽完成签到 ,获得积分10
4秒前
文闵发布了新的文献求助20
5秒前
Liu发布了新的文献求助50
5秒前
5秒前
5秒前
6秒前
6秒前
faquir发布了新的文献求助10
7秒前
77发布了新的文献求助10
8秒前
Koalas举报弱智少年QAQ求助涉嫌违规
8秒前
义气语儿完成签到,获得积分10
10秒前
10秒前
hyc完成签到,获得积分10
11秒前
大笨钟发布了新的文献求助10
11秒前
12秒前
我们完成签到 ,获得积分10
12秒前
12秒前
14秒前
科研通AI6应助科研通管家采纳,获得30
14秒前
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
子车茗应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
风吹麦田应助科研通管家采纳,获得50
14秒前
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
今后应助科研通管家采纳,获得10
15秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226445
求助须知:如何正确求助?哪些是违规求助? 4397958
关于积分的说明 13687854
捐赠科研通 4262492
什么是DOI,文献DOI怎么找? 2339139
邀请新用户注册赠送积分活动 1336507
关于科研通互助平台的介绍 1292544