DiZyme: Open‐Access Expandable Resource for Quantitative Prediction of Nanozyme Catalytic Activity

计算机科学 资源(消歧) 催化作用 材料科学 化学 有机化学 计算机网络
作者
Julia Razlivina,Nikita Serov,Olga E. Shapovalova,Vladimir V. Vinogradov
出处
期刊:Small [Wiley]
卷期号:18 (12) 被引量:30
标识
DOI:10.1002/smll.202105673
摘要

Enzymes suffer from high cost, complex purification, and low stability. Development of low-cost artificial enzymes of comparative or higher effectiveness is desired. Given its complexity, it is desired to presume their activities prior to experiments. While computational approaches demonstrate success in modeling nanozyme activities, they require assumptions about the system to be made. Machine learning (ML) is an alternative approach towards data-driven material property prediction achieving high performance even on multicomponent complex systems. Despite the growing demand for customized nanozymes, there is no open access nanozyme database. Here, a user-friendly expandable database of >300 existing inorganic nanozymes is developed by data collection from >100 articles. Data analysis is performed to reveal the features responsible for catalytic activities of nanozymes, and new descriptors are proposed for its ML-assisted prediction. A random forest regression (RFR) model for evaluation of nanozyme peroxidase activity is developed and optimized by correlation-based feature selection and hyperparameter tuning, achieving performance up to R2 = 0.796 for Kcat and R2 = 0.627 for Km . Experiment-confirmed unknown nanozyme activity prediction is also demonstrated. Moreover, the DiZyme expandable, open-access resource containing the database, predictive algorithm, and visualization tool is developed to boost novel nanozyme discovery worldwide (https://dizyme.net).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵归发布了新的文献求助10
刚刚
李健应助疯狂的狮子采纳,获得10
1秒前
1秒前
ym完成签到,获得积分20
1秒前
Bob_Y完成签到 ,获得积分10
2秒前
2秒前
椰子糖发布了新的文献求助10
3秒前
3秒前
3秒前
碗碗完成签到,获得积分20
3秒前
3秒前
3秒前
Sophia完成签到,获得积分10
4秒前
liangliang发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
阿虎发布了新的文献求助10
6秒前
拼搏太英完成签到,获得积分10
6秒前
fxh完成签到,获得积分10
6秒前
7秒前
黑犬发布了新的文献求助10
7秒前
老孙完成签到,获得积分10
7秒前
8秒前
李爱国应助超级绾绾111采纳,获得10
8秒前
半壶月色半边天完成签到 ,获得积分10
8秒前
fxh发布了新的文献求助10
9秒前
稳重的菠萝应助大聪明采纳,获得10
9秒前
happyboy2008完成签到,获得积分10
9秒前
wang完成签到 ,获得积分10
9秒前
9秒前
洋葱完成签到,获得积分10
9秒前
椰子糖完成签到,获得积分10
10秒前
Lynn发布了新的文献求助30
10秒前
搜集达人应助华华采纳,获得10
10秒前
11秒前
11秒前
鄂霸发布了新的文献求助10
11秒前
17381362015完成签到,获得积分10
11秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Typology of Conditional Constructions 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3586786
求助须知:如何正确求助?哪些是违规求助? 3155513
关于积分的说明 9506927
捐赠科研通 2858140
什么是DOI,文献DOI怎么找? 1570788
邀请新用户注册赠送积分活动 736611
科研通“疑难数据库(出版商)”最低求助积分说明 721724