Stability and growth mechanism of self-assembling putative antifreeze cyclic peptides

机制(生物学) 防冻剂 抗冻蛋白 化学 环肽 生物物理学 立体化学 生物 生物化学 有机化学 物理 量子力学
作者
Z. Faidon Brotzakis,Mascha Gehre,Ilja K. Voets,Peter G. Bolhuis
出处
期刊:Physical Chemistry Chemical Physics [Royal Society of Chemistry]
卷期号:19 (29): 19032-19042 被引量:19
标识
DOI:10.1039/c7cp02465g
摘要

Cyclic peptides (CPs) that self-assemble in nanotubes can be candidates for use as antifreeze proteins. Based on the cyclic peptide sequence cyclo-[(l-LYS-d-ALA-l-LEU-d-ALA)2], which can stack into nanotubes, we propose a putative antifreeze cyclic peptide (AFCP) sequence, cyclo-[(l-LYS-d-ALA)2-(l-THR-d-ALA)2], containing THR-ALA-THR ice binding motifs. Using molecular dynamics simulations we investigate the stability of these cyclic peptides and their growth mechanism. Both nanotube sequences get more stable as a function of size. The relative stability of the AFCP sequence CPNT increases at sizes greater than a dimer by forming intermolecular THR side chain H-bonds. We find that, like the naturally occurring AF protein from spruce budworm (Choristoneura fumiferana), the THR distances of the AFCP's ice binding motif match the ice prism plane O-O distances, thus making the AFCP a suitable AF candidate. In addition, we investigated the nanotube growth process, i.e. the association/dissociation of a single CP to an existing AFCP nanotube, by Transition Path Sampling. We found a general dock-lock mechanism, in which a single CP first docks loosely before locking into place. Moreover, we identified several qualitatively different mechanisms for association, involving different metastable intermediates, including a state in which the peptide was misfolded inside the hydrophobic core of the tube. Finally, we find evidence for a mechanism involving non-specific association followed by 1D diffusion. Under most conditions, this will be the dominant pathway. The results yield insights into the mechanisms of peptide assembly, and might lead to an improved design of self-assembling antifreeze proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttttttttttt发布了新的文献求助10
刚刚
1秒前
zzz发布了新的文献求助10
3秒前
隐形曼青应助陈曦采纳,获得10
3秒前
4秒前
4秒前
乐观啤酒应助xumeo采纳,获得10
6秒前
哈哈发布了新的文献求助30
7秒前
zhzike发布了新的文献求助50
7秒前
8秒前
希望天下0贩的0应助wayhome采纳,获得10
8秒前
顾矜应助wwwyyy采纳,获得10
9秒前
咖啡八块八完成签到 ,获得积分10
9秒前
Terc发布了新的文献求助10
9秒前
webryy发布了新的文献求助10
9秒前
10秒前
千跃关注了科研通微信公众号
10秒前
11秒前
Always完成签到 ,获得积分10
11秒前
852应助科研通管家采纳,获得30
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
None应助科研通管家采纳,获得20
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
None应助科研通管家采纳,获得20
12秒前
axiao发布了新的文献求助10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
nozero应助科研通管家采纳,获得200
13秒前
13秒前
13秒前
Doctor Tang发布了新的文献求助10
14秒前
于归发布了新的文献求助10
14秒前
16秒前
菜菜子发布了新的文献求助10
16秒前
18秒前
深情安青应助Aurora采纳,获得10
19秒前
兴奋采梦发布了新的文献求助10
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738248
求助须知:如何正确求助?哪些是违规求助? 3281724
关于积分的说明 10026477
捐赠科研通 2998622
什么是DOI,文献DOI怎么找? 1645291
邀请新用户注册赠送积分活动 782740
科研通“疑难数据库(出版商)”最低求助积分说明 749891