材料科学
电解质
聚合物
分离器(采油)
化学工程
电极
多孔性
复合材料
化学
热力学
物理
工程类
物理化学
作者
Jin Il Kim,Yunah Choi,Kyung Yoon Chung,Jong Hyeok Park
标识
DOI:10.1002/adfm.201701768
摘要
In this work, a structurable gel‐polymer electrolyte (SGPE) with a controllable pore structure that is not destroyed after immersion in an electrolyte is produced via a simple nonsolvent induced phase separation (NIPS) method. This study investigates how the regulation of the nonsolvent content affects the evolving nanomorphology of the composite separators and overcomes the drawbacks of conventional separators, such as glass fiber (GF), which has been widely used in sodium ion batteries (SIBs), through the regulation of pore size and gel‐polymer position. The interfacial resistance is reduced through selective positioning of a poly(vinylidene fluoride‐ co ‐hexa fluoropropylene) (PVdF‐HFP) gel‐polymer with the aid of NIPS, which in turn enhances the compatibility between the electrolyte and electrode. In addition, the highly porous morphology of the GF/SGPE obtained via NIPS allows for the absorption of more liquid electrolyte. Thus, a greatly improved cell performance of the SIBs is observed when a tailored SGPE is incorporated into the GF separator through charge/discharge testing compared with the performance observed with pristine GF and conventional GF coated with PVdF‐HFP gel‐polymer.
科研通智能强力驱动
Strongly Powered by AbleSci AI